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ABSTRACT 

Since all properties (anatomy, physiology and sensory processing mechanisms) of the 

human visual system are the product of evolution and postnatal development, it is 

reasonable to suppose that they have been configured to make the most effective use 

of the characteristics of the environment, according to the lifestyles of the individuals 

who exploit them. This optimisation has been shown most convincingly for fish and 

insects, but there are many information theory based studies, which point to a similar 

optimisation in humans and other primates. Here we aim to demonstrate this tenet 

experimentally. 

In the first two studies, we conducted psychophysical experiments that required human 

observers to distinguish between achromatic pictures of slightly different faces or 

objects (i.e. shape discrimination). The stimuli were digitally modified to increase their 

deviation from the second-order statistics of natural images, making them increasingly 

“unnatural” in this respect. Performance was best when the stimuli had statistics 

similar to those found in the natural visual environment. We also explored 

performance when viewing stimuli monocularly, using foveal and peripheral vision. 

Our results show that performance in peripheral vision was best for slightly “blurred” 

morph sequences and that stimulus resizing (M-scaling) did not fully compensate for 

the deficiencies of peripheral vision. In a third study, a simple multi-resolution cortical 

model of the discrimination processes was shown to be capable of predicting the 

previous psychophysical results. A fourth study was carried out to explore the spatio-

chromatic information content of natural scenes. We found that a particular subset of 

scenes (those containing red fruit on a background of green or yellow leaves) have 

properties that match those of the psychophysically measured achromatic and red-

green chromatic contrast sensitivity funtions but not the blue-yellow chromatic 

contrast sensitivity functions, implying that the red-green opponent system is 

particularly well suited to the fruit/leaf discrimination task. 
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GLOSSARY 

Morph sequence: indexed sequence of 41 digitised monochrome pictures of similar size 

and grey level depth produced artificially from two original (reference) pictures 

using a morphing technique. This technique allows small changes in shape, texture 

and contrast from one image to the next. The two original pictures are the fist and 

last in the sequence. 

Reference image: one of the non-morphed (first or last) images of a morph sequence. 

Test image: one of the morphed (intermediate) pictures of the morph sequence. 

Experimental trial: single run of the morph discrimination experiment. Three pictures 

from the same morph sequence are presented sequentially on the screen and the 

observer has to decide which one is the “odd one out” (2AFC paradigm). 

Experimental series: collection of 180-200 trials performed on a morph sequence with the 

same characteristics (same Fourier amplitude slope). They allow for the morph 

discrimination threshold to be calculated. 

Morph discrimination threshold: value calculated from a given experimental series by fitting 

the psychometric function with the integral of a normal distribution. 

Experiment: consists of seven complete experimental series, each one corresponding to 

a different Fourier amplitude slope. The seven corresponding morph 

discrimination thresholds are usually plotted to form a typical U-shaped graph. 

Experimental conditions: refers to experiments performed using the four different morph 

sequences (man-to-woman, woman-to-man, car-to-bull and bull-to-car). 

Chrominance: refers to the normalised push-pull signal given by a combination of two 

chromatic mechanisms (L vs. M in the case of RG_chrom and S vs. Lum the case 

of BY_chrom). It is different from “chromaticity”. 
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C h a p t e r  1  

INTRODUCTION 

Background to this work 

I have called this principle, by which each slight variation, if useful, is 
preserved, by the term of Natural Selection. Charles Darwin, On the 

Origin of Species (1859) ch. 3 

1.1. Overview 

This work focuses on the relationship between the statistical properties of natural 

scenes and the early stages of processing by the human visual system, with special 

attention to the adjustment (optimisation) of the second to the properties of the first. 

Chapter 1 provides a summarised review of the existing literature in the field, starting 

with the properties of the environment, the physiology of the HVS and the advantages 

of optimisation. Chapter 2 is centred on the spatial properties of foveal vision and its 

capacity to discriminate small changes in achromatic natural (and unnatural) scenes. 

The methodology here is based on psychophysical experiments and data analysis. 

Chapter 3 extends this analysis to peripheral vision under similar circumstances and 

using similar methodology. In Chapter 4, we try to explain the previous experimental 

results by means of a (very simple) computer model, based on plausible assumptions 

about the human visual system’s early processing stages. In Chapter 5 we tackle issues 

of spatial colour vision and its relationship with the visual environment, focusing on 

the properties of coloured visual scenes that may have been crucial in determining the 

characteristics of colour vision in humans. Our starting point in that chapter is the 
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gathering of a database of calibrated natural scenes, to be analysed by computational 

methods. 

This work borrows from several disciplines its research methods and techniques. 

Given this, it may be it beneficial for the reader to have a summary of the 

corresponding methods at the beginning of each individual chapter, instead of the 

classical approach of writing a single comprehensive “Methods Chapter”, which may 

risk being too obscure and disconnected from the rest. 

1.2. Prologue: environment, detectors and optimality 

The hypothesis that the HVS (human visual system) is optimised to encoding natural 

scenes has become a tenet in vision research. But what does optimisation mean? In most 

cases, this term refers to the mathematical problem of optimising the assets of a 

function. Finding the solution for this problem is today a complex field with diverse 

applications in physics, engineering, computer science, cybernetics, economics, 

manufacturing and biology. In many cases, solutions are straightforward and familiar, 

and concern maximising (or minimising) the value of certain variable such us units of 

production, weight, temperature, etc. In biology, the solution may involve maximising 

fitness, or number of offsprings or caloric intake. This maximised (or minimised) 

quantity is usually a function of several variables subject to a set of constraints. Not all 

optimisation problems are clearly soluble or admit unique solutions and the 

characterisation of the function in question, its relevant variables, constraints etc. is 

usually a complex problem itself. 

The mindless process of natural selection is capable of producing more intricate and 

exquisite designs than those produced by human skills. This process statistically 
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compares the small, inherited variants with respect to their effects on reproduction and 

allows new variants with higher-than-average fitness to supplant old variants (which 

were themselves fitter than those they supplanted) (Seger and Stubblefield 1996). A 

succession of such incremental substitutions can quickly improve the design, and 

eventually transform it radically (Dawkins 1986). Genetic algorithm computing (a method of 

computationally solving complex and otherwise difficult optimisation problems) is a 

burgeoning discipline in Computer Science that exploits the power of this process 

(Holland 1992). 

The problem of “optimality” is, thus, central to all biological sciences. Within 

evolutionary ecology there is a substantial tradition treating natural selection as an 

optimising agent that produces maximal adeptness to the environment (Maynard Smith 

1978; Richardson 1994). This approach (called “adaptationism”) has been challenged 

from a variety of sources (Amundson 1994; Gould and Lewontin 1979), but remains 

the mainstream of evolutionary biology (Parker and Maynard Smith 1990; Seger and 

Stubblefield 1996). 

Although it is natural selection, rather than the organism, that acts as “optimisation 

agent” (organisms do not “calculate” the optimal size to grow to or optimal calorific 

intake), the common approach to understanding the process is by taking an 

engineering view of the problem, imagining how to build a biological system given the 

environmental constraints. ‘The optimisation approach to adaptation is not based on the 

assumption that organisms are “optimal” in any global or metaphysical sense, and in fact it often 

reveals that they are far less than “perfectly” adapted’ (Seger and Stubblefield 1996). 

All biological organisms must live in, and interact with, the natural environment; and in 

many cases, the minute details of this interaction may determine whether an organism 
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will survive long enough to reproduce or not. The nature of this interaction varies 

depending on the physical properties of the environment and the characteristics of the 

other organisms that share the same surrounding space. This may take place in many 

ways, being commonly the case that organisms develop specialised parts of their 

bodies, some to detect physical perturbations and some to react to them (Morgan 

1965). Many properties of the physical environment are likely to be perturbed (e.g. 

mechanical, electrical, magnetic, chemical perturbations, etc.) and may give rise to these 

specialised “sensors”. However, developing sensors, although potentially beneficial, 

comes at some evolutionary cost, given that they consume energy, make the genetic 

coding more complex, are more likely to be exposed and damaged and, in many cases, 

need other specialised organs to function. Therefore, it makes sense to develop sensors 

that gather the most relevant type of information for the organism, are somehow 

protected from harmful effects of the environment, and require the least amount of 

supporting “hardware” to function. 

Having a well-designed sensory system may provide an organism with evolutionary 

advantages over their competitors, helping it to find food, find the right mate or escape 

predators easier and quicker. One can imagine the properties of such a mechanism to 

be: 

a) Cost effective. The biological advantages it supplies should outweigh the 

energetic cost of running it (Attwell and Laughlin 2001). 

b) Reasonably protected from harmful effects of the environment 

(mechanical interactions, radiation, energy peaks of the physical 

perturbation it senses, etc.). 
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c) Reasonably noise-free. The signal-to-noise ratio should be large enough 

so that the information supplied by the sensor is useful. 

d) Able to efficiently collect the most relevant information and filter out 

irrelevant data. 

In other words, the sensory system has to be closely related to the environmental 

signal. The study of the properties of the sensory system (as a group of subsystems that 

acquire, communicate and represent information) has benefited greatly from the 

formulation of the theory of information (Shannon and Weaver 1949). By using the 

theory of information as an efficiency principle, (to assess the efficiency of the neural 

representation, assuming that efficient representation of information has some 

evolutionary advantages) formulated as an optimisation problem, one can produce design 

principles and predict neural processing (Atick 1992). In this optimisation problem, one 

must also consider the relevant activities (tasks) that the organism must perform in 

order for the sensory system to be biologically advantageous. Sensory systems tuned to 

the same physical property of the environment may have different characteristics 

according to the task that the organism wants to perform (e.g. it might be 

advantageous for a predator to have its sensors tuned to detect movement, etc.). There 

are many examples of ecological adaptation of the sensory systems to the visual task 

and the properties of the natural environment (Chiao et al. 2000b; Fasick and Robinson 

2000; Lythgoe 1984; Lythgoe and Partridge 1989, 1991). 

Sensory systems tend to be named according to the physical property that they sense, 

for example, the systems that are tuned to detect mechanical waves of air pressure 

(sound) are called auditory senses, the ones that are tuned to detect chemical 

perturbations are called chemical senses, etc. The sensory system that is tuned to detect 
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perturbations in the visible part of the electromagnetic radiation spectrum is called 

“visual system”. To understand some of the properties of the visual system we first 

need to understand some of the properties of light. 

1.3. Electromagnetic radiation detectors 

1.3.1. Physical properties of  light 

The classical view of electromagnetic radiation as a perturbation (wave) that travels 

through space is illustrated in Figure 1.1. 

 

Figure 1.1: Classical view of an electromagnetic wave travelling 
through space. 

This perturbation is generated by an electrically-charged particle that oscillates along 

the y-axis. Vector E (plotted on the y-axis) represents the electric field, vector B 

(plotted on the z-axis) is the magnetic field and the wave propagates along the x-axis. 

The frequency of the particle’s oscillation determines the frequency of the propagating 

wave, and its energy. The direction of this oscillation in space determines the plane of 

polarization of the wave. The speed of the propagation is constant (the speed of light), 
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thus the wavelength of the oscillation is inversely related to its frequency, given that 

speed = wavelength · frequency. 

This classical view is well suited for explaining the production of low frequency 

electromagnetic radiation. To explain the production of higher frequency 

electromagnetic waves we need to add quantum physics hypotheses, but the picture of 

the travelling wave of radiation holds in most cases. In the quantum view, an 

interaction between high frequency radiation and small objects or particles is 

represented like a hail of particles (called photons), each with energy proportional to 

the radiation’s frequency. Electromagnetic radiation is classified according to its 

frequency/wavelength as shown in Figure 1.2: 

 

Figure 1.2: Classification of electromagnetic radiation according 
to its wavelength. 

Organisms that possess any kind of visual system are sensitive only to a very small 

range of electromagnetic wavelengths (between 300-700 nm approx.). This is despite 

the fact that the electromagnetic energy reflected from most vegetation peaks outside 

these limits (in the infra-red or IR). For example, receptors found in the human visual 

system (HVS) are only sensitive to wavelengths between 400 and 700 nm 

consequently, this range is called the “visible spectrum” and this radiation is called 

“visible light”. The biological reasons as to why this is the case are related to the 

materials from which all biological organisms are built. IR radiation produces a process 
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called thermal isomerization1 of the photopigments in photoreceptors, which generates 

noise. Even low temperatures (like the body’s temperature of 37°C) generate enough 

IR noise at 700 nm (Aho et al. 1988; Barlow 1957, 1988). Short-wavelength radiation, 

like the ultra-violet (UV) radiation, severely damages proteins and nucleic acids in all 

living cells, owing to a process called photo-oxidation (as a result of the interaction 

between oxygen and light). This constraint may not affect birds and insects (which 

have have a shorter lifespan than mammals and can thus tolerate the damaging effects 

of UV). Bennett and Cuthill (Bennett and Cuthill 1994) provided a review of the 

evidence of UV vision in birds and its function. There are other (physical) constraints 

to the use of UV-light by an animal. The degree of scattering of the light passing 

through a medium of small particles (that is, relatively small compared to the 

wavelength of the light, e.g. dust) is proportional to the inverse of the fourth power of 

the wavelength. Because of this, UV-light will be much more scattered than light of 

longer wavelengths, resulting in distant objects being indistinct in the UV. 

Imperfections in the optical media of the eye may also increase this UV-light scattering. 

These two limits (UV and IR) apparently determine the outer boundaries of the visible 

range that an animal can maximally cover. The advantages that an animal will have 

from having an UV or IR receptor have to be balanced against its ability to keep low 

the costs of repairing or compensating for damages (Neumeyer 1991). 

1.3.2. Light and the visual environment 

The properties of electromagnetic radiation from which relevant information about the 

world can be extracted are: 

 
1 An isomer is a chemical species with the same number and types of atoms as another chemical 

species, but possessing different properties. “Thermal isomerization” refers to this process occurring 
by effects of heat. 



 

11

a) Amplitude of the wave or number of photons per unit of time (also 

called radiance). 

b) Frequency of the wave or energy per photon. 

c) Plane of polarization. 

d) Direction of travel of the wave. 

Natural light is often produced by a large number of charged particles that oscillate at 

different amplitudes, frequencies and directions in space (thus, it contains a mixture of 

wavelengths or photons with different energy, and different planes of polarization). 

The Sun is an example of a natural light source that radiates across the whole of the 

electromagnetic spectrum (although its intensity varies with the wavelength 

considered). Most of its radiation is absorbed by the Earth’s atmosphere before it 

reaches our visual environment. This absorption is not even across the spectrum, and 

some wavelengths are absorbed more than others. The interaction of light from the 

Sun and the Earth’s atmosphere also produces other effects such as refraction, diffraction 

and phase shift. Refraction occurs when radiation goes from a medium to another and 

changes its direction of travel. It happens differently for different wavelengths. 

Diffraction occurs when a small object (the same order of magnitude in size as the 

wavelength of the radiation) is in the way of the electromagnetic wave. The radiation 

emerging from different sides of the object interfere so that the resultant energy 

patterns are not uniform. This is a consequence of the wave-like nature of light and 

determines the geometry of the smallest holes that light can enter without losing its 

information properties (primarily, it is the direction of the incident light that is lost 

during this process). The smallest hole that light can enter without suffering from this 
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phenomenon is called the “diffraction limit”. The efficiency with which the 

atmosphere can scatter light and the direction in which the incident light is 

redistributed are dependent on all these effects.  

The interaction of sunlight with air molecules in the atmosphere produces scattering of 

the radiation with lower wavelengths, which determines the wavelength distribution of 

the light coming from the sky. Scattered light reaching us from the sky contains more 

energy in the lower end of the visible spectrum than light coming directly from the 

sun. This in turn affects the composition of the light that illuminates objects, which is a 

mixture of direct light from the sun and indirect light from the sky. As a result, objects 

in the shade are illuminated by light with higher proportion of short wavelentghs. 

Shadows produced by direct light from the sun are “sharp” (the energy transition is 

steep) because all the electromagnetic waves come from a single, long-distance source. 

Shadows produced by indirect illumination from the sky (i.e. light coming from 

different directions) have “softer” edges, where the energy transition is smooth. 

Small particles (e.g. dirt, cloud droplets and small ice crystals which are some 50 times 

larger than the light wavelengths) floating in the atmosphere scatter light of all 

wavelengths equally, thus producing an increase in the amount of light coming from all 

directions (diffuse light) and decreasing the amount of directional energy present. The 

overall effect is a decrease in the “contrast”2 of the scene (e.g. fog). 

Most of the light that reaches our eyes has not only interacted with the atmosphere but 

has also interacted with objects by means of reflection. Reflection alters some of the 

properties of light in various ways. It mainly changes the direction in which the light 

 
2 See Section 4.2.1 for a more detailed explanation of contrast in complex images. 
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travels, but it also attenuates the amplitude and alters the frequency composition and 

the plane of polarization of the light. Reflection produces light scattering, a process 

where the light is reflected with different degrees of likelihood in different directions. 

Some incident light is reflected at the interface (specular reflection – follows simple 

geometrical rules). The rest of the light enters the material and interacts with embedded 

particles. Part is absorbed and part re-emerges as reflected light (body reflection). The 

interface reflection is likely to be concentrated on one direction while body reflection 

emerges with almost equal likelihood in all directions. A reflection where most of the 

light is reflected by the interface is called “specular” and a reflection where most of the 

light is reflected by the body is called “diffuse” or “Lambertian”. Most real surfaces 

show some degree of both of these types of reflection but the ratio varies greatly. 

Objects do not reflect the same amount of light in every wavelength. They usually 

reflect (or inversely, absorb) more light at some wavelengths than at others. The 

spectral reflectance function of a surface is the property that describes the fraction of 

the light reflected as a function of wavelength. This gives objects their different 

“colours”. 

Since the HVS does not detect changes in the plane of polarization, we will not be 

concerned with this property here. 

1.3.3. Biological light detectors and the physical properties of  the environment 

Almost every living thing (from animals and plants to single-celled organisms) is 

sensitive to light. It is possible to follow the evolution of photoreceptors, from simple 

cells towards more complex, specialised receptors (adept at detecting movement) 

through to human eyes. Primitive receptors may be distributed over the skin, but true 
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image-forming eyes started when receptors were arranged in groups, inside a 

depression (pit) (Lythgoe 1991). Environmental pressure can be seen as the driving 

force of this process; for example, primitive pits enhanced directional sensitivity and 

protected the receptors from the surrounding glare, although they made the receptors 

more susceptible to being blocked by foreign particles. Transparent membranes (which 

later evolved into crude lenses) were developed to keep these particles away from the 

pit (Cronly-Dillon 1991; Gregory 1998). The water from the sea-like environment was 

replaced by a fluid (aqueous humour). The crude membrane-lenses evolved from light-

intensity-increasing devices towards image-forming devices, which focused the light on 

the (ever more complex) photoreceptors, etc.. (Gregory 1998). 

There is a wealth of exciting literature on the evolution of the eye (Cronly-Dillon 1991; 

Gregory 1991; Land 1991), visual processing (Horridge 1991) and visual behaviour 

(Lythgoe 1991) involving several topics and disciplines, showing the clear physical and 

physiological constraints that shaped this aspect of evolution. For example, it is 

possible to show that the laws of optics govern the evolution of the eye by 

demonstrating the relationship between the dimensions of eyes, the geometry of 

receptors and the diffraction limit of light (Horridge 1991). The compromise met by 

the eye is to produce optics with the least possible blurring, and optimise the size of 

the receptors to match the optical resolution of the finest detail by the lens. This 

evolution is governed by the laws of optics while the evolution of the visual centres, 

which analyse the visual information, can follow along independently later. This is 

perhaps the reason why very sophisticated and complex eyes (e.g. like those found in 

medusae and worms) are not necessarily accompanied by a nervous system that can 

achieve much visual processing (Horridge 1991). While these sophisticated eyes may 

provide an evolutionary advantage for best detecting a moving shadow (which could 
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be an approaching predator or possible mate), for example, for the development of 

more sophisticated visual centres, a more complicated visual task is needed. We will 

come back to the subject of what are the possible visual tasks that may have driven the 

evolution of the HVS at the end of this chapter (Section 1.9) after exploring some of 

its properties. 

1.3.4. The human eye 

Figure 1.3 shows a cross section of the human eye (De Valois and De Valois 1990). 

 

Figure 1.3: Schematic cross-section of the eye, (from De Valois 
and De Valois 1990). 

Light enters the eye and passes through its optics (cornea and lens) before reaching the 

retina. Here is where photoreceptors (called cones and rods, according to their 

photosensitivity) convert the light into neural activity. The most common 

photoreceptor found in the retina is the rod (there are about 108 rods in the human 

retina). Rods are sensitive to low (scotopic) illumination levels and become saturated 

when exposed to moderate levels of light. Cones are less common (6·106 cones in each 

retina) but are responsible for vision at higher (photopic) illumination intensity levels. 

The distribution of these photoreceptors is not even over the retina. Rods are 
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maximally concentrated at about 20° from the optic axis. Although they are found 

throughout the whole retina, cones are particularly concentrated over a very small area, 

where the visual axis meets the retina, called the fovea. 

Figure 1.4 shows the spatial density distribution of rods and cones in the retina. The 

plot shows some interesting features: 

a) The density of cones falls almost vertically near the limits of the fovea. 

b) There is an absence of photoreceptors at about 17-19° from the visual 

axis, in the nasal side of the retina (temporal visual field). This area 

(circular in shape), which corresponds to where the ganglion cell axons 

(see below) exit the retina, is called the blind spot. 

c) There is a big reduction in the density of rods in the fovea, and there is 

even a rod-free area. 

 

Figure 1.4: Distribution of rods and cones as a function of retinal 
eccentricity from the visual axis. (From De Valois and De Valois 
1990). 
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The size of the fovea (which plays a disproportionately large role in visual perception) 

is about 1.5 mm in diameter or about 5.6° of the visual field (Wandell 1995). Cones are 

highly packed in this area, reaching densities of 160,000 cones/mm2. The central part 

of the fovea is completely rod-free (size 0.5 mm, about 1.7°). The highest 

concentration of cones happens at the centre of the fovea, in an area that is also 

capillary-free, called the foveola (size 0.3 mm, about 1°) (Wandell 1995). 

Although rods are much more numerous (and smaller) than cones and sample the 

retinal image more finely, their outputs are pooled into fewer neurons enhancing their 

sensitivity, but decreasing their fine level detail information. As was mentioned before, 

the interaction between light and small molecules (such as photopigments) can be 

modelled as a “hail” of particles. When this hail is sparse, the output of the 

photoreceptors suffers from noise (called “quantum noise”) attributable to the discrete 

and probabilistic nature of this physical phenomenon. Spatial (and temporal) 

summation makes sense at scotopic illumination levels because it reduces the quantum 

noise inherent of very low illumination (De Valois and De Valois 1990). 

Rods become saturated quickly (Norman and Werblin 1974) when illumination levels 

rise, so they are believed to be useful for nocturnal vision only and to play little role in 

everyday photopic vision. Figure 1.5 shows a scheme of the intensity-response 

functions of both rods and cones at different levels of adaptation (represented by 

broken lines A, B, C, etc..). For example, at adaptation level A, rods’ sensitivity is 

higher and this will induce larger responses than those at adaptation level B, where 

rods are almost saturated. At higher (C) light levels, rods become completely saturated. 

Cones on the other hand, can adapt for a few seconds to higher light levels beyond C 

up to intensities that would bleach out all the photopigment molecules. When a cone 
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adapts to a light level (e.g. C) lights D and E would be indistinguishably bright 

(blocking the cones’ synaptic release), but if the cone is allowed to adapt to level E, it 

will now respond to light around this level. This does not happen for rods, which 

cannot compensate for their compressed intensity response (limited dynamic range) 

(De Valois and De Valois 1990). Because of this, and because rods are absent from the 

central fovea (where most of the visual input comes from), our study will concentrate 

on the visual information supplied exclusively by cones. 

 

Figure 1.5: Scheme of the rod and cone intensity-level response 
for different adaptation levels (shown as A, B, C, D and E on the 
plot). Rods do not compensate for changes in the illumination 
levels and therefore do not “adapt” in the same way as cones do. 
Because of this, they show a compressed intensity-level function. 
(From De Valois and De Valois 1990). 

1.3.5. Some characteristics of  the photopic photoreceptors (cones) 

Over 90% of the light entering the eye is not captured by any photoreceptor (Baylor 

1987). Most of the light would just be absorbed by the layers of neural elements (and 

the arteries, veins and capillaries that nourish them) or simply enter the photoreceptors 

and exit out on the other side, before being absorbed by a black pigment layer called 

the pigment epithelium, behind the retina. The other 10% will be absorbed by one of the 
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photo-pigment molecules in the outer segment of the receptor (see Figure 1.6). The 

photo-pigment molecules absorb photons and produce chemical reactions that change 

the electric state of the cell, leading to changes in electrical potential at its synaptic 

ending (Morgan 1965). The likelihood that a photon is absorbed by a given 

photoreceptor depends on both the energy of the photon (or the light wavelength) and 

the type of photoreceptor involved. Once a photon is absorbed by a photo-pigment, 

the probability that the transduction succeeds is about 0.7 (Goldsmith 1991). 

 

Figure 1.6: Scheme of mammalian rod and cone photoreceptors. 
(From Wandell 1995). 

Photo-pigments are classified according to their photon absorption preferences. The 

absorption spectrum of a photo-pigment describes the relative probability that a 

photon of specific energy will be absorbed. According to this, there are many classes of 

photoreceptors, each with its characteristic absorption spectrum, which peaks at the 

most favoured wavelength. 

The nature of photon absorption by photo-pigments present in the receptors means 

that once a photon has been absorbed, all information about the energy of this photon 

(or light wavelength) is lost. The receptor can only report to the central nervous system 

that a photon has been absorbed. This means that a moderate flux of photons near the 
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most favoured wavelength will produce the same rate of absorptions as a high flux at a 

less favoured wavelength (this is known as the principle of univariance) (Rushton 1964). 

Three types of cone have been identified in the human retina. We name them 

according to their spectral response functions (L is the long-wavelength sensitive cone, 

M is the medium wavelength sensitive cone and S is the short-wavelength sensitive 

cone). Their physical size varies accordingly to foveal eccentricity (1 to 4 µ diameter in 

the fovea, 4 to 10 µ in the periphery) and they are not evenly distributed either. There 

are about 14 times more combined L and M cones than S cones in the retina (Wandell 

1995). This is consistent with the strong blurring of the short-wavelength component 

of light due to the axial chromatic aberration of the lens. For example, the average 

number of S-cones in the fovea is 6-7 cones/degree of visual field (De Monasterio et al. 

1985; Williams et al. 1981), much less than the average number of combined L- and M- 

cones of 120 cones/degree (Wandell 1995). The ratio of the number of L to M cones 

varies from one human observer to another. Table 1 shows some of the L/M ratios 

obtained and the different assumptions behind each measurement. There are very few 

S cones in the centre of the fovea, which, for this reason, is called S-cone blind spot 

(Williams et al. 1989; Williams et al. 1981). Their maximal incidence is within an annulus 

of 1° eccentricity (Ahnelt et al. 1987). 



 
Method Assumptions Study Mean 

ratio 
Range of 

L/M cones 
ratios 

Photopic 
luminosity 
function 

Compares the relative 
numbers of L and M 

required to fit an individual 
or a standard flicker 

photometric function. 

(De Vries 1947) 

(Vos and Walraven 
1971) 

(Walraven 1974) 

(Smith and Pokorny 
1975) 

(Knau et al. 2001) 

 

 
2.0 

2.0 

 
1.6 

 

0.59 - 4.0 

 

 

 
 
 

0.9 - 3.4 

Spectral acuity Compares visual acuities for 
heterochromatic gratings  

(Brindley 1954) 

(Smith and Pokorny 
1975) 

<< 1.0 
 

<< 1.0 

 

Weber 
fractions 

Compares the Weber 
fractions for Stiles's red and 

green mechanisms. 

(Vos and Walraven 
1971) 

 
1.64 

 

Spectral 
sensitivity 
functions 

Compares the relative heights 
of the spectral sensitivity 

functions of the cone 
primaries. 

(Walraven 1974) 2.0  

Point source 
detection 

Relates the detection 
steepness of the 

psychometric functions to 
the cone numbers 

contributing to detection. 

(Cicerone and 
Nerger 1989) 

(Vimal et al. 1989) 

(Cicerone et al. 1994)

 
2.07 

2.8 

2.0 

 
1.46 - 2.36 

1.6 - 4.0 

1.3 - 2.5 

Human ERG Compares the amplitudes of 
the isolated L- and M-cone 

ERG responses. 

(Shapley and Brodie 
1993) 

 
>> 1.0 

 

Adaptive 
optics and 

retinal 
densitometry 

Images of the arrangement of 
the L, M and S cone 

receptors in living human 
eyes. 

(Roorda and 
Williams 1999) 

  
1.15 - 3.79 

Table 1: Comparisons between the mean values of L:M cone 
ratios produced by different workers, methods and assumptions. 
The table was based on the list compiled by A. Stockman and 
L.T. Sharpe at the Color and Vision Database: 
http://cvrl.ioo.ucl.ac.uk. 
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1.3.6. Determining the spectral sensitivity of  the receptors 

The spectral sensitivities of human cone photoreceptors were only measured after 

Rushton (Rushton 1962) developed a non-invasive technique called retinal densitometry3 

to study retinal photopigments in the 1960s. Retinal densitometry can determine the 

absorption spectrum for the L and M cones across the central part of the visible 

spectrum, but this technique loses accuracy in the short and long wavelength range. 

Another technique, called microspectrophotometry is based on isolating a single cone (after 

removing the retina from the eye) and illuminating it with monochromatic4 light of 

known radiance. The transmitted light is measured and the difference between the 

incident and transmitted light is attributed to photopigment absorption. By repeating 

for many wavelengths, it is possible to determine the whole absorption spectrum for 

each type of cone. These measurements revealed that the absorption spectrum of the 

three L, M, and S pigments are surprisingly invariant across many species of Old World 

monkeys (Bowmaker and Mollon 1983; MacNichol et al. 1983) with maximum values 

at about 430, 535 and 565 nm. In humans, pigments for the L and M cones are similar 

to those of Old World monkeys (Bowmaker and Dartnall 1980; Dartnall et al. 1983), 

but S cones seem to have a pigment absorbing at shorter wavelengths with a maximum 

at about 420 nm (Bowmaker 1991). 

 
3 This technique allows the study of the absorption spectrum of one of the cone types in the fovea. For 

example, to study the M cones it is necessary to find a colour anomalous subject who has only M 
cones in the fovea (S cones are normally absent from the central fovea, so a person who is missing L 
cones will have only M cones in the fovea). The measurement consists of shining a monochromatic 
(single wavelength) light, of known radiance, onto the fovea and measuring the amount of light 
reflected back out. The radiance of the reflected light will be less than that of the incident light due to 
absorption by the photopigment. It is therefore possible to compute the relative absorption for that 
wavelength. By repeating the procedure for a large number of wavelengths, one can determine the 
absorption spectrum for the M cones. To find the absorption spectrum for the L cones, the 
procedure is repeated with a colour anomalous person who is missing the M cones. 

4 Light with energy concentrated on a single wavelength. 
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It was not until quite recently that human cone photo-pigments were available in 

quantities large enough (e.g. by reproducing each cone pigment using DNA cloning 

techniques (Merbs and Nathans 1992)) to define their properties with higher degree of 

certainty than those provided by retinal densitometry and microspectrophotometry. 

Under these new measurements, maximum absorption values were found to be 426 

nm for the S pigment, 530 nm for the M pigment, and 5575 nm for the L pigment. 

Before these techniques, their spectral properties were obtained indirectly, from 

psychophysical colour and brightness matching experiments and physiological 

measurements of cone photocurrents (Alpern and Pugh 1974). The first 

(psychophysical experiments) require the observer to match a monochromatic test light 

with combinations of three primary lights on a bipartite white screen and obtain a plot 

of the primary light intensity as a function of test light wavelength. To be able to 

obtain colour-matching functions, a few theoretical conditions must be met (Wandell 

1995): 

a) Linearity6: if any combination of lights  matches light t and 

another combination 

),,( 321 eeee

),,( 321 eee ′′′′e  matches light t’; then t+t’ matches 

e+e’ (Grassmann’s additivity law) (Grassmann 1854). The colour-

matching experiment linearly maps the physical stimulus to the primary 

intensities. Because of this property, it is possible to relate input to 

output with a linear matrix transformation: e=C·t. 

                                           
5 There are actually two polymorphic variants of the L pigment in humans, the second being closer to 

the M pigment, with a maximum absorption value at 552 nm Bowmaker J.K. 1991. Visual pigments, oil 
droplets and photoreceptors. in The perception of colour. Vision and visual disfunction. J. R. Cronly-
Dillon. 1991. The Macmillian press Ltd., London. 108-127, Merbs S.L. and Nathans J. 1992. 
Absorption spectra of human cone photopigments. Nature. 356, 433-435.. 

6 A function that obeys superposition (f(a)+f(b)=f(a+b))) and homogeneity (f(c.a)=c.f(a)) is called a linear 
function. 



 

24

b) The three primary lights should be visually independent, meaning that no 

additive mixture of two of the primary lights should be a visual match to 

the third. 

c) “Negative” lights can be represented by shining one of the primaries on 

the test field (e.g. 321 eee =+  is the same as 231 eee −= ) 

There are many combinations of primary lights (all related by linear matrix 

transformations) that can produce colour-matching functions. In 1931, these various 

combinations of primaries were unified by the CIE (Commission Internationale 

d’Eclairage – an international standards organization) to produce the )(),( λλ yx  and 

)(λz  standard colour matching functions (see Figure 1.7). There, the x-axis represents 

the wavelength of the test light and the y-axis represents the amounts of the primary 

lights (tristimulus values) that would be required to match it. 

These functions are appropriate for many applications and have become an industrial 

standard, especially because they are non-negative and also because )(λy  is coincident 

with another CIE standard curve, the spectral luminous efficiency curve or V( λ ), which is a 

set of weighting factors to convert radiometric values of monochromatic light into 

photometric units. The main drawback is that no set of physically realisable primary 

lights can yield these colour-matching functions. Inaccuracies in the short-wave region 

of these early estimates have been improved by Judd (Judd 1951). The CIE colour 

matching functions can objectively represent any spectral power distribution in terms 

of three values called X, Y and Z. 
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Figure 1.7: The CIE (1931) XYZ standard colour-matching 
functions, called  and . The x-axis represents 
the wavelength of the test light and the y-axis represents the 
amounts of the primary lights (tristimulus values) that would be 
required to match it. 

)(),( λλ yx )(λz

It is possible to translate the tristimulus values from a set of primary lights (such as 

those defined by the CIE functions of Figure 1.7) to another by means of a linear 

matrix transformation. This also means that we can find a matrix transformation to 

convert the XYZ tristimulus values into the equivalent LMS (cone absorption curves) 

tristimulus values. This can be done by determining the nine coefficients of 

transformation in the T matrix: 
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Equation 1.1 

Where L, M and S are the tristimulus values (or absorption values) of the three classes 

of cones and X, Y and Z are the CIE (1930) tristimulus values. To solve Equation 1.1 
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we need to make certain assumptions (Travis 1991b) like, for example to suppose that 

dichromacy7 is a reduced form of normal colour vision (Helmholtz-König hypothesis). A set 

of L, M and S cone fundamentals (called the Helmholtz-König cone fundamentals) can 

be deduced from this hypothesis by using co-punctal points (i.e. points that represent 

colours confused by the different types of dichromats). Other sets of cone 

fundamentals can be derived from other assumptions such as different colour 

matching functions, co-punctal points or different normalization constants to 

determine the relative heights of the functions (Travis 1991b). 

 

Figure 1.8: Smith and Pokorny’s LMS (for long-, medium- and 
short-wavelength sensitive) cone sensitivity functions. 

Smith and Pokorny (Smith and Pokorny 1972, 1975) were able to psychophysically 

derive the cone spectral sensitivity functions (see Figure 1.8) by measuring the 

contributions from one type of cone at a time. They used red-green dichromat subjects 

(people lacking either the L sensitive receptor or the M sensitive receptor) and the 

                                           
7 Dichromats are people who lack one of the three classes of cone photopigments. The remaining two 

classes are believed to be no different from those of people with normal colour vision. 
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hypothesis of reduction dichromacy (where only the central part of the fovea, which lacks 

short-wavelength receptors, is used). They showed that spectral sensitivities of these 

observers are similar in shape to the corresponding L or M visual pigment absorption 

spectra (Smith and Pokorny 1972). S-cone sensitivity here peaks at a different value 

from that measured for the S-photreceptor (420 nm), reflecting the filtering effect of 

the yellow lens (Xu et al. 1997). 

The responses (photocurrents) of monkey cones to monochromatic light of different 

wavelengths were physiologically measured by Baylor et al (Baylor et al. 1987). They 

found cones with three different spectral response functions, with sensitivities varying 

over a factor of 106. These physiological measurements confirmed the psychophysical 

results obtained previously. After correcting for absorptions by the lens and inert 

pigments in the eye, it was also possible to derive from these three spectral response 

functions a system matrix for the colour matching experiments. 

1.4. Post-receptoral and cortical mechanisms 

Most of the neurophysiological vision research that concerns the present work was 

done on cats and macaques. Although the overall structure of these visual systems is 

thought to be similar to that of humans, there are some differences (e.g. cats have poor 

colour vision). 

The output from retinal receptors does not travel directly to the brain. First, it is 

processed by an array of neurons in the retina, where it is transformed from simple 

measures of the number of photons to more complex spatio-chromatic information. 

Retinal neurons develop embryologically from the same cell lines that give rise to the 

brain, and because of that, the retina (which is part of the central nervous system) can 
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act on the visual information and transform it. This transformation is produced by the 

need for transmitting information through the optic nerve (Atick 1992). The optic 

nerve (see Figure 1.9) connects the retinal cells with the striate cortex (see below) and 

has two serious constraints: 

a) Has to be flexible (so that we can move our eyes). 

b) Like the rest of the body, is built of limited materials (has a transmission limit 

set by its biology). 

 

Figure 1.9: Scheme of the visual system showing the relative 
positions of the eye, LGN and visual cortex. Image publicly 
available from webvision: http://webvision.med.utah.edu). 

Given that there are about 108 receptors in the retina and only about 106 optic nerve 

fibres, and the ambient light levels determine a receptor’s dynamic range of about 106 

(from moonless night to bright sunny day), the visual system has to somehow 

“compress” the amount of visual information so that its resources are maximised 

(Atick 1992; De Valois and De Valois 1990). 



 

29

1.4.1. Spatial and spectral antagonism 

The structure of post-receptoral retinal organisation contains layers (levels) of neurons. 

Each level does some kind of processing upon the visual information and passes its 

output to the next level. Neurons in the retina can be classified in two basic types of 

cells, those that conduct information towards the next level and those that conduct 

information laterally, within the same level. Figure 1.10 shows a scheme of the post-

receptoral retinal organisation, with bipolar, horizontal, amacrine and ganglion cells. 

Bipolar cells are synaptically connected to photoreceptors, and can be divided in two 

classes: ON-bipolars and OFF-bipolars. ON-bipolars are excited (i.e. produce changes 

on their membrane potentials) when light falls over its subserving receptors and are 

inhibited (their membrane potentials are attenuated) when light falls over the 

surrounding receptors. OFF-bipolars have opposite behaviour. Horizontal cells are 

responsible for lateral connections within the retina. The number of receptors that a 

horizontal may contact varies between six (in the fovea) to 40 (in the periphery) 

(Boycott and Kolb 1973). 

It has been proposed (Gouras 1991) that this array of antagonistic connections 

determines two complementary mechanisms, subserving each area of the visual space 

in parallel and responding in a push-pull way to increments or decrements of light. 

These two mechanisms (which signal increments or decrements of light intensity) 

provide a larger dynamic range and use less metabolic energy than a single sensor. 

Most visual neurons (including receptors) receive antagonistic or opposing signals 

indirectly from neighbouring receptors through the retina. For any given neuron, the 

antagonistic influence tends to be strongest in the area surrounding the photoreceptors 

subserving it (Kuffler 1953). This phenomenon enhances a border’s contrast formed 
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by gradients of light. For example, to obtain achromatic contrast the brain must 

somehow compare the outputs of a ON-bipolar to that of a neighbouring OFF-

bipolar. To obtain chromatic contrast it must compare the output of cells that get 

excited by some wavelengths (e.g. long wavelengths) to that of cells that get excited by 

another wavelengths (e.g. medium-short wavelengths). In the fovea, cone bipolars are 

subserved by a single cone, whereas in the periphery, this system breaks down and 

bipolars are subserved by several cones. This arrangement reduces spatial resolution 

but does not appear to alter colour discrimination (Gouras 1991). 

 

Figure 1.10: Scheme of the post-receptoral retinal connections, 
including bipolar, horizontal, amacrine and ganglion cells. (Kolb, 
Fernandez and Nelson, image publicly available from webvision: 
http://webvision.med.utah.edu). 

Bipolar cells transmit visual information into the next layer, formed by amacrine and 

ganglion cells. Like the horizontal cells, amacrines make up for the lateral connections 

in the second layer. The axons of the ganglion cells provide the retinal output to the 

cortex (via a neuronal system called the Lateral Geniculate Nucleus (LGN)). 
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1.4.2. The M and P visual pathways and the Lateral Geniculate Nucleus 

In addition to the mechanisms described above, there is evidence of a parallel system 

of ganglion cells throughout the retina. For example, the ratio of bipolar and ganglion 

cells to cones in the fovea is greater than two (Krebs and Krebs 1989; Schien 1988), 

and there are differences in the spectral sensitivity, conduction times (Gouras 1968) 

etc., of some ganglion cells. The parallel ganglion cell system (subserved by a separate 

set of bipolar cells that receive input from both L and M cones) does not show spectral 

opponency (Gouras 1991). Both types of cones feed the direct and antagonistic inputs 

to ganglion cells; therefore, the system is excited by a broad band of spectral 

wavelengths. Signals reach these spectrally broadband ganglion cells faster than 

chromatically opponent cells (Gouras 1968). The contribution of S-cones seems to be 

only to chromatic contrast (i.e. they do not contribute to achromatic contrast) (De 

Valois et al. 1966; Derrington et al. 1984; Derrington and Lennie 1984; Ingling and 

Martinez 1983). The connections between S cones and bipolars resemble that of L and 

M cones and bipolars in more peripheral areas of the retina. They receive input from S-

cones and opponent signals from L and/or M cones. 

Figure 1.9 shows a scheme of the connections between the retinal neurons, the LGN 

and the visual cortex. The LGN is the main route by which the retina communicates 

with the cerebral cortex in primates and it is separated in layers. Retinal axons synapse 

into specific layers of the LGN according to their function. For example, the output 

from fast (or transient) spectrally broadband ganglion cells synapses onto the 

magnocellular layers and all other axons (from slower or sustained ganglion cells) synapse 

in the parvocellular layers (Cleland et al. 1971; De Valois and De Valois 1990; Kulikowski 

and Tolhurst 1972; Tolhurst 1973). 
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Magnocellular and parvocellular layers segregate into two functionally different visual 

systems, which work in parallel in each local area of the retinal image (Derrington et al. 

1984; Derrington and Lennie 1984; Gouras 1971; Wiesel and Hubel 1966). 

Magnocellular layers are more developed in nocturnal animals (Hassler 1966) and less 

fovealised (Chacko 1948) than parvocellular layers. The magnocellular system is crucial 

in the perception of movement (Schiller et al. 1989). It has a high sensitivity for 

achromatic contrast (Shapley et al. 1981) and lower spatial resolution than parvocellular 

cells (Derrington and Lennie 1984). There is also psychophysical evidence for presence 

of these sustained and transient mechanisms in human vision (Kulikowski and 

Tolhurst 1972; Tolhurst 1973). 

There are four distinct types of LGN cells, subserving the L, M and S retinal receptors 

(in ON and OFF-centre arrangements) and the achromatic L+M system. The cells that 

subserve the L and M cones have extremely small receptive field8 (RF) centres, 

especially in the fovea and surrounding areas. They usually subserve one L or M cone 

in the centre of their receptive field and receive antagonistic input from a larger area 

(including the surround of their receptive fields). The LGN cells that subserve the S 

cone mechanism have larger receptive field centres and only contribute to blue-yellow 

chromatic contrast. The spectrally broadband cells that subserve both the L and M 

cones (L+M) show weak or no cone opponency and must only contribute to 

achromatic contrast (Derrington et al. 1984; Gouras 1991). There is also evidence for a 

third thin layer of primate LGN cells below the magnocellular and parvocellular layers, 

called the koniocellular layer (Hendry and Reid 2000; White et al. 2001; Xu et al. 2002; Xu 

et al. 2001). This consists of smaller cells, which share some characteristics with other 

LGN cells, although there is evidence that their visual responses are modulated by 
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tactile and auditory stimuli (Irvin et al. 1986; Norton and Casagrande 1982; Norton et al. 

1988), suggesting that their role is more to do with modulating rather than participating 

directly in spatial vision. 

More recently, there has been evidence for some S cone input to other neural pathways 

such as the motion-related middle temporal (MT) area of the visual cortex (Seidemann 

et al. 1999). The consensus now seems to be that the S input to MT comes from a 

circuit originating in the koniocellular pathway (Hendry and Calkins 1998; Hendry and 

Reid 2000; Martin et al. 1997). A review on the physiology of the visual pathways 

associated with blue/yellow colour vision and links between the S cone and other 

visual channels is provided by Calkins (Calkins 2001). 

Retinal connections account for only 10% of the LGN synapses. Nearly 60% of the 

LGN synapses are feedback signals from the cortex, and the remaining are connections 

from other parts of the brain, (Wandell 1995). At present, there is no clear indication 

of the role that these feedback signals play (they are assumed to somehow modulate 

the visual input from the retina). 

1.4.3. Cortical Neurophysiology 

In primates, the major part of the signal from the retina and the LGN arrives at a 

single area within the occipital lobe of the cortex called area V1 or primary visual cortex. 

This area contains about 1.5⋅108 neurons, about 100 times more than the LGN or the 

number of optic nerve fibres. Although there are more than 20 other cortical areas that 

receive strong visual input, area V1 has been the subject of most of the study and it is 

by far the best-known cortical visual area (Wandell 1995). 

 
8 See a definition of receptive field later in Section 1.5.1. 
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V1 is a layered structure. Anatomists have identified six main layers (numbered 1 to 6, 

layer 1 being the most nearest to the surface) based on differences in the relative 

connections of neurons, axons and synapses. Layer 4 has been subdivided into several 

parts (labelled A, B and C) according to its interconnections with other areas of the 

brain. Magnocellular and parvocellular neurons of the LGN are connected to area 4C. 

Magnocellular neurons send their signals to the upper part of area 4C (labelled 4Cα) 

and Parvocellular neurons connect to the lower half (called 4Cβ) (De Valois and De 

Valois 1990; Wandell 1995). Layer 6 sends a large output back to the LGN (Lund et al. 

1975). 

Signals from the two eyes are initially segregated as they arrive in the cortex (layer 4C) 

and their organisation has been described early as forming “ocular dominance 

columns” (Hubel and Wiesel 1977). 

Receptive fields in area V1 are qualitatively different from receptive fields in the LGN. 

While most LGN neurons have circularly symmetric receptive fields, most V1 neurons 

tend to respond better to stimuli moving in one direction than in the opposite 

(direction selectivity) (Hubel and Wiesel 1968). Simple cells’ receptive fields differ from 

those of the retinal ganglion cells and LGN in the presence of excitatory and inhibitory 

regions that are not concentric and in their preference for stimuli of certain orientation 

(orientation selectivity) (Hubel and Wiesel 1959). These orientation selective neurons 

are found, in macaque, in layers 2 and 3, and are quite rare within layer 4C. The 

orientation selectivity of cortical cells has been explained in terms of summing the 

outputs from receptive fields of LGN cells that were in different (but aligned) spatial 

locations (Hubel and Wiesel 1962) as shown in Figure 1.11. The preferred orientation 

of neurones varies in an orderly way with the neuron’s position in the cortical sheet 
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(De Valois and De Valois 1990; Hubel and Livingstone 1987; Hubel and Wiesel 1977). 

There are areas in the layers 2 and 3 of the visual cortex that lack orientation selectivity. 

They coincide with higher concentrations of an enzyme called cytochrome oxidase (Hubel 

and Livingstone 1987). 

 

Figure 1.11: Cortical orientation-selective RFs can be created by 
the addition of responses from circular (non-oriented) RF such as 

those found in the retina and the LGN. (From Wandell 1995). 

Lesions produced in the magnocellular and parvocellular pathways of the monkey have 

shown that performance deteriorates differently for different tasks (Merigan et al. 

1991a; Merigan et al. 1991b; Schiller et al. 1989). These experiments demonstrate that 

the parvocellular pathway is concerned with a variety of tasks, such as colour 

discrimination and pattern detection. When magnocellular cells in the LGN are 

destroyed, visual performance is mostly unaffected, apart from tasks requiring the 

ability to code high temporal frequency flicker or movement information (Merigan et 

al. 1991a). 

In summary, the fast (transient) magnocellular pathway is concerned with coarse 

achromatic (low-SF) visual information and movement information. The slow 
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(sustained) parvocellular pathway deals with fine achromatic (high-SF) and chromatic 

(low-SF) visual information. It responds weakly to movement and carries stereoscopic 

information (Gouras 1991). Given the characteristics of the magnocellular system, it is 

unlikely that its goal is to optimally encode the spatio-chromatic properties of the 

natural world. Instead, it seems more concerned with other (and equally important) 

survival priorities related to the detection of movement. Since the purpose of the 

present work is to investigate the possible optimisation of the HVS to encode the 

spatial and chromatic statistical information of natural scenes and not movement, we 

will concentrate on the properties of the parvocellular visual pathway. 

1.5. Visual information coding by the parvocellular pathway 

Contrast is a very important parameter for assessing vision. High contrast stimuli are 

usually presented in clinics (black letters on white background), but sinusoidal gratings 

are generally used to measure the ability of the eye and visual system to encode optical 

information at a wide range of spatial scales. There are several reasons why gratings 

became a popular type of stimuli: 

a) Gratings can be made and calculated precisely in any frequency and 

contrast. 

b) Gratings can be extended to any size, and any stimuli can be transformed 

into a set of component gratings and back (by a simple 2D-Fourier 

transform). 

c) Because of the linear nature of the majority of cells in the retina and 

some 50% of the cortex (De Valois and De Valois 1990), it has been 
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argued that knowledge of grating sensitivity will give clues as to how we 

“see” any part of a scene (see Section 1.7, below). 

The contrast of a grating is defined by: 

minmax

minmax

LL
LL

C
+
−

=  

 

Where Lmax and Lmin represent the maximum and minimum values of luminance and C 

(called the modulation, Rayleigh or Michelson contrast) ranges between 0 and 1. Since the 

luminance of a grating varies in a sinusoidal manner, we can alter the contrast of a 

grating without changing its average luminance. A very common psychophysical 

measure of optical and neural performance is obtained by asking observers to decide 

what contrast is necessary to render a grating just visible (Schade 1956). A plot of 

(contrast) sensitivity versus spatial frequency of the stimulus grating is called the spatial 

contrast sensitivity function (CSF). 

1.5.1. The receptive field and gratings 

The visual receptive field of a neuron is defined as the retinal area in which light 

influences the neuron’s responses. It depends on the properties not only of the neuron 

in question, but also on the whole of the prior visual pathway, from the optics of the 

eye to the neuron itself. 

Retinal ganglion cells responses have proven to be reasonably linear by satisfying the 

principle of superimposition (i.e. the resultant response of a neuron to a large stimulus 

is equal to the response of the centre plus the surrounding areas) (Enroth-Cugell and 

Pinto 1970; Enroth-Cugell and Robson 1966). These linear neurons have been named 
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X cells and their defining characteristic is the presence of a grating position on its 

receptive field which elicits null response from the neuron (Enroth-Cugell and Robson 

1966). There is also evidence of the existence of non-linear ganglion cells (much less 

common, called Y cells) that do not share the same characteristics (Y cells would elicit a 

response to a grating at any phase) (Enroth-Cugell and Robson 1966). 

Because the response of X cells to contrast patterns is linear, it is possible to map the 

stimulus contrast onto the change in firing rate of the neuron. Figure 1.12 shows the 

two-dimensional receptive field of a typical linear retinal ganglion neuron (e.g. an ON-

centre). It was measured by shining small points of light on a cat’s neuron receptive 

field and measuring its neural response (Kuffler 1953). Light areas of the figure denote 

retinal locations where light excites the neuron, dark areas show where light inhibits the 

neuron and grey areas represent retinal locations where light has little or no influence 

in the neuron’s response. This centre-surround mechanism can be modelled as the 

difference between two Gaussian functions (Enroth-Cugell and Robson 1966; Rodieck 

1965). 

 

Figure 1.12: Two-dimensional scheme of a ON-centre, OFF-
surround, retinal ganglion cell receptive field. Light areas of the 
figure show where light excites the neuron, dark areas show 
where light inhibits the neuron and grey areas represent retinal 
locations where light elicits little neuron response. (From Wandell 
1995). 
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As mentioned before, an advantage of using gratings is that any 2-dimensional stimulus 

can be analysed in terms of its 2-dimensional Fourier components (sinusoidal and 

cosinusoidal contrast gratings). The neuron that is described by the receptive field in 

Figure 1.12 will be more sensitive to certain stimuli than others. For example, a 

sinusoidal pattern of light that illuminates the excitatory part and darkens the surround 

would elicit a maximum response. Gratings with other SFs would either stimulate the 

surroundings to produce antagonistic output (thus reducing the cell’s total response) or 

weaken the effect of the centre. Neurons like these and others found in the visual 

cortex act in fact as local Fourier analysers, reacting more strongly to some SFs than to 

others. Figure 1.13 shows the contrast sensitivity function (CSF) of a neuron in the 

parvocellular layers of a monkey LGN (retinal ganglion cell receptive fields are 

indistinguishable from the corresponding LGN receptive fields). It was obtained by 

drifting grating patterns across the retina at a velocity such that each point on the retina 

saw 5.2 cycles of the pattern each second (Derrington and Lennie 1984). As a rule, low 

spatial frequencies (low-SF) represent broad areas in the image and high spatial 

frequencies (high-SF) contain information about fine detail in the image. 

The first qualitative receptive-field map of neurons in the cat’s visual cortex was 

produced by Hubel and Wiesel (Hubel and Wiesel 1959) using low-resolution stimuli 

(fairly large spots of light). Maps that are more detailed were obtained using oriented 

bars (Movshon et al. 1978b) and smaller spots of light (Jones and Palmer 1978b). 

Cortical receptive fields vary in the number of sub-regions they contain, their optimal 

spatial phase (relative position of the periodically recurring sequence of the grating) and 

elongation. 
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Figure 1.13: Contrast sensitivity measurements of a neuron in the 
parvocellular layers of the monkey LGN. (From Derrington and 
Lennie 1984). 

1.5.2. Gabor models of  receptive fields 

Hubel and Wiesel (Hubel and Wiesel 1959, 1962) classified cortical neurons in area V1 

according to the linearity of their responses into simple and complex cells. According to 

this classification, the optimal stimuli for simple (linear) cells could be predicted from 

the pattern of excitatory and inhibitory sub regions in the cell’s receptive field. Simple 

cells do satisfy the homogeneity and superimposition conditions for linearity (while 

complex cells do not), therefore, their receptive fields can be measured using linear 

methods. Although the criteria used by Hubel and Wiesel for classifiying cortical 

simple and complex cells in terms of their linearity is functionally identical to those 

used by Enroth-Cugell and Robson for classifying X and Y cells, it should not follow 

that there is a parallel arrangement of linear and non-linear ganglion cells feeding into 

linear and non-linear cortical neurons. 



 

41

The one-dimensional structure of simple-cells receptive fields (obtained using 

orientation bars) can be described by a one-dimensional function called “Gabor 

function” (introduced by the communications engineer Dennis Gabor in 1946) (Gabor 

1946). This function consists of a localised sinusoidal variation (which is in fact the 

product of a sinusoidal function and a Gaussian function) that minimises the 

uncertainty in position and spatial frequency, and therefore provides a highly efficient 

encoding of arbitrary stimuli. The Gabor function can be generalised into 2-

dimensional space by simply extending the Gaussian spatial envelope in the second 

dimension (see Figure 1.14). 

From Figure 1.12 and Figure 1.14 it is possible to see that one of the main features of 

retinal and LGN receptor fields is their radial symmetry, while the cortical receptor 

fields are characterised by orientation-specific structure.  

 

Figure 1.14: Representation of a Gabor function in 3-dimesional 
space. The Gaussian envelope can be tuned to give function the 
characteristic shape of simple-cells receptive fields. 

Figure 1.15 (De Valois et al. 1982a) shows a plot of the CSF for six cortical neurons 

(both simple and complex) in area V1 of monkey. Their tunings is narrower than those 

of retinal ganglion cells (around 1.5 octaves) and they seem to vary in their preferred 

SF.  
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Simple cells with Gabor-like receptive fields are to a first approximation linear, i.e. the 

shape of the receptive field predicts some aspects of responses to gratings (Jones and 

Palmer 1978a, b; Movshon et al. 1978b; Ringach 2002). However, there are systematic 

mismatches in predictions (Deangelis et al. 1993; Tadmor and Tolhurst 1989) that may 

imply important non-linearities. 

 

Figure 1.15: Contrast sensitivity of sex neurons in area V1 of 
monkey. (From De Valois et al. 1982a). 

Gabor described a family of transforms that are capable of representing one-

dimensional signals. These were later extended (Kulikowski et al. 1982) to transforms 

(also called wavelet transforms) with bandwidths increasing proportionally to SF and to 

two dimensions (Daugman 1985; Watson 1983). This has strong implications for 

modelling the processing of visual information in the cortex, since Gabor transforms 

can represent images with arrays of basis functions that are localised in both image and 
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SF space which (some authors claim) capture the intrinsic properties of the visual 

environment, such as scale invariance (see Section 1.8.6) (Field 1987, 1989, 1990). 

1.5.3. The CSF as an envelope of  numerous band-pass mechanisms 

The properties of the CSF of individual ganglion neurons (Enroth-Cugell and Robson 

1966) have been found to match behavioural CSF of the cat (Pasternak and Merigan 

1981) for a variety of mean background intensities. This means that the information 

present at the output of individual neurons is available when the observer makes 

judgements on the presence of contrast patterns. However, single cortical neurons 

have narrower SF tuning curves than the overall CSF, suggesting (De Valois and De 

Valois 1990) that the later might represent the envelope of many narrowly tuned 

cortical mechanisms (or channels). Under this view, a “channel” is composed of all 

those cells with receptive fields that are identical in every respect except retinal 

location. Each of these channels is responsive to only one fraction of the total range of 

SFs present in the CSF and they work simultaneously (in parallel). Evidence for SF-

channels comes from electrophysiological measures of striate cortex cells of macaque 

(De Valois et al. 1982a) and cat (Movshon et al. 1978a) as well as psychophysical 

adaptation experiments (Blakemore and Campbell 1969) and SF masking (Campbell 

and Robson 1968; Legge and Foley 1980). In these adaptation experiments, one can 

selectively modify the sensitivity of an observer to a certain spatial pattern (by adapting 

the observer to that pattern) without modifying the sensitivity to other spatial patterns 

(Blakemore and Campbell 1969). Figure 1.16 shows the spatial frequency adaptation 

effect (following adaptation to a low-SF) from one of such experiments (De Valois 

1977b). 
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Figure 1.16: Spatial frequency adaptation effect, after adaptation 
to a low-SF. (From De Valois and De Valois 1990). 

Careful measurements have revealed that SF adaptation may increase contrast 

sensitivity in other parts of the spectrum. This may indicate that SF channels are not 

truly independent and may have an inhibitory effect on each other (De Valois 1977b; 

De Valois and Tootell 1983; Tolhurst and Barfield 1978). Masking studies, where the 

detectability of a pattern is measured along and in the presence of another (masking) 

pattern have also provided psychophysical evidence for the presence of SF selective 

channels (Legge and Foley 1980). 

Striate cortex recordings (De Valois et al. 1982a; Movshon et al. 1978a) have shown that 

cells, which are maximally sensitive to a certain spatial frequency, vary greatly in their 

SF-bandwidth tuning (and receptive field profiles). There is also activation of cells in 

response to increments in the contrast of gratings that do not match the cell’s optimal 

SF tuning. This heterogeneity and variability in the properties of neurons may lead us 
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to review the idea of “rigid” channels and favour the image of channels being 

composed of whatever cells are contributing to the transmission of information with 

power at a particular SF (De Valois and De Valois 1990). However flexible this 

definition may be, SF channels have been successful in predicting the detectability of 

complex luminance (Blakemore and Campbell 1969; Campbell and Robson 1968; 

Graham et al. 1978) visual patterns and perceptual changes with adaptation (Blakemore 

and Campbell 1969). There is also evidence for the presence of multiple SF channels 

that are sensitive to pure colour patterns (Bradley et al. 1985; De Valois and Switkes 

1983). The same logic applied to suprathreshold masking can be applied to produce a 

similar paradigm called subthreshold summation. Here the responses of two or more 

subthreshold stimuli can be added to produce a stimulus that would be detected by 

neurons within a channel. For this to happen, a channel needs to show linear 

summation within its SF-band. Gratings of closely related SF have been found (Sachs 

et al. 1971) to produce subthreshold summation (which does not happen with gratings 

of very different SF). 

1.5.4. SF-channel bandwidth 

SF-channels are orientation selective (adaptation to a horizontal grating has no effect 

on the detection of a vertical grating) (De Valois and De Valois 1990). Since the first 

neurons in the visual pathway to show narrow orientation tuning are those in the 

cortex (Hubel and Wiesel 1959, 1962), it is reasonable to accept that the 

psychophysically measured channels are cortical in origin. There is also considerable 

interocular transfer of the SF-adaptation effects, which implies that cortical neurons 

are involved (Blakemore and Campbell 1969) since the cortex is the first place where 

interocular summation occurs. 
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The bandwidth of the SF-channels has been estimated using different psychophysical 

(Blakemore and Campbell 1969; Legge and Foley 1980; Sachs et al. 1971) and 

physiological techniques (De Valois et al. 1982a; Movshon et al. 1978a). There is a 

degree of variation between these results, but most of the studies come to a rough 

agreement at the bandwidth (or the width at half-height of the Fourier peak) of SF-

channels being 1 to 1.5 octaves in both cats and macaque (De Valois and De Valois 

1990). 

1.5.5. Spatial frequency interactions 

Although most of the analysis of the visual system in terms of SF-processing is based 

on a linear systems approach (which is mathematically simpler), there are non-

linearities in its responses that ought to be considered. For example, a given increment 

in the stimuli would produce a different resulting behaviour depending if it is above or 

below threshold. The non-linear response of cortical cells is evident in the different 

apparent contrast for stimuli with the same physical contrast and different SF at 

suprathreshold levels (Georgeson and Sullivan 1975) and the occurrence of half-wave 

rectification (Albrecht and De Valois 1981). 

However, the non-linearities that concern us most are those related with interactions 

between different SF-channels: if the system’s responses were truly linear, the various 

SF-channels would operate independently of each other. The first suggestion that this 

may not be the case came from (suprathreshold) adaptation experiments by Tolhurst 

(Tolhurst 1972). He compared the loss in contrast sensitivity resulting from adaptation 

to sinusoidal ratings and to square-wave gratings (which contain a larger variety of 

sinusoidal Fourier components) that had their fundamental frequencies equated. 

Adaptation to the square grating produced a smaller loss in contrast sensitivity 
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compared to the sinusoidal grating. Tolhurst suggested that this difference might be 

due to an inhibitory effect produced by the response of the other channels (not directly 

stimulated by the fundamental frequency) to sinusoidal Fourier components present in 

the square-wave function. These findings have been backed by physiological evidence 

of inhibitory effect of stimulus outside the receptive field of cortical cells (Blakemore 

and Tobin 1972; De Valois and Tootell 1983). A model of the mutual inhibition of 

striate cortex cells (effectively normalizing their responses with respect to stimulus 

contrast) has been presented by Heeger (Heeger 1992). 

In summary, it is not right to think of the visual system as being truly linear, however, 

in certain circumstances (such as in threshold or just-suprathreshold contrast) its 

behaviour approximates that of a linear system. 

1.5.6. Colour Opponency and the CSF 

Psychophysical measurements of the sensitivity of human subjects to red-green-

isoluminant (526 nm and 602 nm) and monochromatic (526 nm) gratings were made 

by Mullen in 1985 (Mullen 1985). These results are shown in Figure 1.17. Figure 1.18 

shows a similar graph for blue-yellow (470 nm and 577 nm) isoluminant gratings. Both 

Figures display a band-pass (with respect to spatial frequencies) achromatic CSF and a 

low-pass chromatic CSF. The human colour and luminance CSFs have several 

characteristic features: 

a) The presence of a low-SF decline in the achromatic CSF. This may be 

necessary for the visual system to filter out the low-SF luminance information, 

which results primarily from variations in the intensity of illumination (Mullen 

and Kingdom 1991). 
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b) The absence of a low-SF decline in the chromatic CSF. This may be related to 

the usefulness of detecting broad areas of homogeneous colour across 

variations in luminance (e.g. shadows) in natural images (Mollon 1989). An 

object of given chemical composition will have uniform “colour” but local 

luminance and shadows from its combined texture and shape. 

c) Colour contrast resolution (related to sensitivity at the highest SF) is lower than 

luminance contrast resolution. 

The absence of a metric for colour contrast (in the same way as there is a metric for 

luminance contrast) makes the comparison between these two curves difficult (e.g. a 

different choice of colour pairs would cause the whole of the chromatic CSFs to 

change). This problem can be overcome by specifying stimulus contrast by means of 

its physiological effectiveness (Mullen and Kingdom 1991), for example, using cone 

responses to luminance and colour contrast as a common measure to compare colour 

and luminance contrast sensitivity (Mullen 1985). 

 

Figure 1.17: Contrast sensitivity functions (CSFs) for the red-
green (squares) opponent chromatic system and the luminance 
(circles) system. (From Mullen 1985). 
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Figure 1.18: CSF for the blue-yellow (squares) opponent 
chromatic system and the luminance (circles) system. (From 
Mullen 1985). 

One can also assume that these systems adapt to the dynamic range of normal 

stimulation and compare them in a relative manner (e.g. by normalising the areas below 

the curves, etc.). 

The CSF clearly shows some of the limits to the performance of colour vision (e.g. in 

terms of spatial resolution). These limitations may have their origin in the difficulties of 

representing both chromatic and achromatic information in the parvocellular cells at 

the level of the early-post receptoral mechanisms. For example, the need to combine 

both spectral and spatial opponency in such cells leads to a system that is capable of 

carrying two or more types of information simultaneously (this is referred as 

multiplexing). There is evidence that multiplexing is done by opponent units, that act as 

a single mechanism carrying both luminance and chromatic information (Derrington et 

al. 1984; Ingling and Martinez Uriegas 1983; Ingling and Martinez 1983; Thorell et al. 

1984). Demultiplexing mechanisms (to separate the luminance and colour signal in the 
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cortex) have been proposed by several workers (D'Zimura and Lennie 1986; Ingling 

and Martinez 1983; Martinez-Uriegas 1991; Mullen and Kingdom 1991). 

Receptoral and post-receptoral mechanisms play an important role in setting the 

maximum achromatic and chromatic resolution. As seen before, chromatic contrast 

depends on the differences in the spectral composition of light while achromatic 

contrast depends on differences in the spatial distribution of energy of light. These two 

distributions can change independently of each other across borders (e.g. dappled 

shadows in the forest). At the receptoral level (see Figure 1.19), achromatic contrast can 

make use of the maximum resolution of the photoreceptor mosaic while chromatic 

contrast has to be obtained after a comparison between at least two analogous 

(localised) groups of cones in neighbouring areas of the visual space (Gouras 1991). 

This is because of the principle of univariance (see Section 1.3) (Rushton 1964), which 

states that a single cone alone cannot distinguish the wavelength of the light falling 

upon it. Chromatic response requires differencing of the outputs of at least two 

different types of cone photoreceptors and this requires doubling the summation area. 

At the post-receptoral level (see Figure 1.19b), this chromatic resolution may be further 

reduced by the need to obtain a differentiating signal from both centre and surround 

receptive fields. Another likely explanation as to why chromatic contrast sensitivity is 

restricted to larger areas (low spatial frequencies) is that signals from a receptor’s 

output difference are likely to be smaller than from a receptor’s output addition (especially 

given the close spectral overlap of the L and M receptors). Integration of the chromatic 

response across a larger area may provide a way of strengthening the weaker chromatic 

signal (Mullen and Kingdom 1991). 
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Figure 1.19: (a) Receptoral and (b) post-receptoral chromatic 
mechanisms. Section (a) shows how achromatic contrast can 
make use of the ultimately resolution of the photoreceptor 
mosaic while chromatic contrast occurs after a comparison 
between two analogous (localised) groups of cones in 
neighbouring areas of the visual space. Section (b) shows how 
chromatic resolution may be further reduced by the need to 
obtain a differentiating signal from both centre and surround 
receptive fields. (a) obtained from Gouras 1991 and (b) from 
Mullen and Kingdom 1991. 

Physiological measures of the output of neurons in the parvocellular layer of the LGN 

(De Valois et al. 1966; Derrington et al. 1984; Wiesel and Hubel 1966) of macaque show 

cells whose output clearly depends on the wavelength of light (i.e. they are involved in 

colour processing). Derrington et al (Derrington et al. 1984) distinguished between two 

groups of these cells. One of these groups receives opposed, but not equally balanced 

inputs from L and M cones and they were labelled L-M cells. The other group of cells 

receives input from S cones almost equally opposed to a combined input from L+M 

cones. These were labelled S-(L+M). A second study (Derrington and Lennie 1984) 

reports relatively high sensitivity for achromatic contrast and higher temporal 

frequency tuning in magnocellular units than in parvocellular units of the LGN. These 

measurements and others helped to establish the physiological basis for a definition of 

colour contrast. Once the cone contributions to the post-receptoral mechanisms are 
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known, then the effectiveness of colour modulation in activating that mechanism can 

be established (Mullen and Kingdom 1991). 

There is not general agreement on the relative cone weightings required to model the 

L-M opponent response. Many such types of weighting (based on different criteria) 

have been used, e.g. L-M (Tansley and Boynton 1976), 0.96L-1.28M (Guth et al. 1980; 

Ingling and Martinez Uriegas 1983), L-2M (Eskew and Boynton 1987; Frome et al. 

1981), 0.8L-M (Stroemeyer et al. 1983). Other views (Stroemeyer et al. 1985) suggest 

that once the effects of visual adaptation within the cones (Weber’s law) are taken into 

account, the contribution of the L and M receptors is nearly equal. Since there is more 

than one opponent mechanism, it is necessary to account for the interactions between 

all of these before a method becomes generalised (Mullen and Kingdom 1991). 

There have been many studies on the influence of the relative densities of L and M 

cones in the retina (which varies from one individual to another (Dartnall et al. 1983)) 

on the human CSF (Ingling and Tsou 1988; Kremers et al. 2000; Miyahara et al. 1998). 

These findings suggest that the sensitivity of the luminance channel is directly related 

to the relative densities of the L and the M cones and that the red-green chromatic 

channel introduces a gain adjustment to compensate for differences in L and M cone 

signal strength. Gunther and Dobkins (Gunther and Dobkins 2002) hypothesise that 

the relative ratio of L versus M cones in the eye should influence red-green chromatic 

contrast sensitivity in the same way it influences spectral sensitivity (also called 

“luminous efficiency function” or V(λ )). They found a correlation between variations 

in the chromatic CSF across subjects and the relative number of L- versus M- cones 

inputting to the L-M mechanism. 
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There have been reports (based on electrophysiological measures) of a shift away from 

colour opponent axes in V1 (Lennie et al. 1990). Chromatically sensitive cortical 

neurons have also been found to have larger receptive fields and slower temporal 

responses than LGN neurons (Ingling and Martinez Uriegas 1983; Kulikowski and 

Walsh 1993). 

1.5.7. Visual adaptation 

In a typical day, the range of absolute intensities that the visual system may experience 

exceeds six orders of magnitude (De Valois and De Valois 1990). However, the range 

of contrasts that we encode in a typical image, from the least contrast that we can 

detect to 100% contrast is no more than 2 orders of magnitude (Tadmor and Tolhurst 

2000). This means that the visual pathways need to have some non-linearities build in 

to adapt their dynamic range to such changes. Indeed, their neuronal and behavioural 

responses change as a function of the mean background intensity (this is called visual 

adaptation). The system behaves non-linearly at a global level, but locally, it can be 

approximated to a linear system, by measuring with respect to local contrast, instead of 

absolute intensity (Wandell 1995) (see Figure 1.5). 

An example of the effects of visual adaptation is the dependence of the CSF of a 

neuron on the mean intensity level of the background. At low background intensities, 

the CSF shows little band-pass behaviour (poor response to high-SF) showing that 

there is little effect of its inhibitory surround. At higher background intensities, the 

shape of the function changes, making the reduced sensitivity to low-SF more 

significant (Enroth-Cugell and Robson 1966). 
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Another clear example of the visual adaptation effects on the response of the visual 

pathways is the change of the threshold sensitivity as a function of the background 

intensity. If we plot the threshold intensity of an incremental test flash required to elicit 

a criterion peak-firing rate on a retinal ganglion cell as a function of the background 

intensity, it follows a linear function (in log-log coordinates) with slope close to 1 

(Enroth-Cugell et al. 1977). This type of relationship (very common and first 

discovered from measurements of human behaviour) is called Weber’s law9. 

1.6. Peripheral vision 

Up to this point, we have described some of the properties of the visual system where 

most of its hardware and computational resources are concentrated, i.e. the fovea 

(although the fovea occupies a tiny fraction of the retina, its processing occupies 25% 

of V1). Vision outside the fovea does not share the quality of foveal vision. For 

example, the task of extracting meaning out of written sentences becomes significantly 

difficult as soon as we move outside the fovea (Latham and Whitaker 1996). This 

difference in the quality of form vision inside and outside the fovea may originate from 

a combination of both lack of neural resources (i.e. image undersampling) and under-

processing of the visual information (Kelly 1984; Rovamo and Virsu 1979; Rovamo et 

al. 1978; Virsu and Rovamo 1979). 

As we shift the stimuli from the fovea into the periphery (see Figure 1.20), the overall 

CSF decreases and both, the CSF peak and the high-SF falloff move towards lower 

SFs. Low-SF attenuations become less apparent in the case of luminance-CSFs 

 
9 Weber’s law states that the change in stimulus necessary to elicit a given response in a system is 

proportional to the initial state of the system. It is generally enunciated as ∆l/l=constant. This 
relationship becomes a line with slope equal to one when plotted in log-log co-ordinates. Although 
very common, in most biological systems this law has proven to be only a rough approximation. 
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(Rovamo et al. 1978). The precise explanation of these effects is not fully known, since 

results largely depend on the size of the stimulus grating. For example, if the peripheral 

patterns are made increasingly large, (to compensate for the presumed retinal lack of 

ganglion cells), the peak CSF shifts to lower frequencies with eccentricity, while the 

contrast sensitivity to lower SF increases in absolute terms (Kelly 1984; Rovamo et al. 

1978). This later effect could be a consequence of probability summation (see below) 

since the extent of the stimuli increases with eccentricity. 

 

Figure 1.20: Variation of the CSF with retinal eccentricity. Curves 
correspond to 0, 1.5, 4, 7.5, 14 and 30 deg. From Rovamo et al. 
1978. 

Evidence (Movshon et al. 1978a; Robson and Graham 1981) suggests that every small 

region of the visual space is analysed by several channels tuned to a variety of SFs. 

Sensitivity to high-SF tends to drop out in peripheral channels, but the entire range of 

SF is detected in the fovea itself. However, the loss of spatial frequency sensitivity 

(acuity) may be only one of the contributing causes to the degradation of form vision 

in the periphery. Hyperacuity tasks (e.g. to discriminate between targets at different 

spatial positions) have revealed some qualitative differences between the processing of 
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foveal and peripheral stimuli. These may be related to the lack of receptors and 

ganglion cells (undersampling) (Levi and Klein 1986), the uncalibrated disarray of 

cortical connections (Hess and Field 1993), loss of sensors at some phase angles 

(Bennett and Banks 1987) and to the topological map of connections from the retina 

to the cortex (Levi et al. 1985; Westheimer 1982). 

The degree of fall in acuity with eccentricity cannot be explained from the spacing 

between photoreceptors (which determined the minimum resolvable angle) (Drasdo 

1977) or the quality of the eye’s optics (Jennings and Charman 1981). It was then 

hypothesised that this should be related to the amount of neural convergence between 

the photoreceptors and ganglion cells (or ganglion cell density) (Brindley and Lewin 

1968). In its turn, ganglion density (D -number of cells per solid degree in the retina) 

was believed proportional to the cortical representation in the striate area. To relate 

changes in the quality of vision with the amount of cortical representation of the 

corresponding retinal space, a compensating factor (called cortical magnification factor or 

M-factor) was introduced (Daniel and Whitteridge 1961). The M-factor represents the 

linear distance in mm of the cortical projection on the striate area that corresponds to 1 

deg of visual space. In order to estimate the M-factor psychophysically, a few 

assumptions must be made: 

a) Ganglion cell density (D) is proportional to the square of the M-factor. 

b) Visual acuity is directly proportional to the M-factor 

c) Cortical measurements of cortical striate projections made in the 

macaque monkey cortex are also representative of cell projections in 

humans. 
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There is not a complete agreement on the validity of these assumptions. Many 

researchers claim that there is a relative expansion of the foveal projection at the level 

of the striate cortex, bigger than that predicted from the ganglion cell density 

(Azzopardi and Cowey 1993; Dow et al. 1981; Van Essen et al. 1984). 

Cowey and Rolls (Cowey and Rolls 1974) found a correlation between the reciprocal 

value of M and visual acuity (minimum angle of resolution). They later estimated, 

based on this correlation, the central value of the M-factor from measurements made 

within 1.5-35 deg. Tolhurst and Ling (Tolhurst and Ling 1988) reviewed the evidence 

relating to the organisation of the visual cortex to determine whether this is organised 

in a similar way to the macaque monkey. They concluded that it is reasonable to accept 

that both species should have similar dependencies of the magnification factor upon 

eccentricity. Human magnification factors were estimated to be 1.6 times greater than 

those of the macaque (Brindley and Lewin 1968; Dobelle et al. 1979). Following the 

evidence from a number of studies, (Daniel and Whitteridge 1961; Dow et al. 1981; 

Hubel and Wiesel 1974; Tootell et al. 1982; Van Essen et al. 1984) Tolhurst and Ling 

(Tolhurst and Ling 1988) estimated the foveal value of M to be between 20-25 

mm/degree. Their calculations of M-factor values are based on a modification of the 

equation provided by Tootell et al (Tootell et al. 1982) adapted for the central 10° of the 

human visual field. This estimate accounts for a fall of M by a factor of 12-18 over 10° 

eccentricity. 

Rovamo and Virsu (Rovamo and Virsu 1979) obtained a set of four equations (one for 

each visual field half-meridian) to compute the value of M. Their computations were 

based on successive approximations so that a simple set of equations would give values 
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of D in agreement with the total number of retinal ganglion cells and the density of the 

centremost cones. 

Since performance in visual tasks is generally worse in the periphery, an increase in the 

size of the stimuli given by the M-factor should produce results similar to those found 

using foveal vision. The use of the M-factor (or M-scaling) has been successful in 

compensating for the fall of performance with eccentricity in a number of visual tasks 

(e.g. simple visual acuity) (Rovamo and Virsu 1979; Rovamo et al. 1978) but it has been 

less able to account for the fall in performance in others (e.g. vernier acuity or stereo-

acuity). Figure 1.21 illustrates the fact that hyperacuity declines with eccentricity more 

steeply than visual acuity and a single M factor cannot explain all thresholds. Estimates 

of the decrease in performance for grating resolution tasks show a fall by a factor of 4-

6 (Cowey and Rolls 1974; Rovamo and Virsu 1979; Rovamo et al. 1978). Vernier acuity 

falls by a factor of 10-16 (Westheimer 1982) and stereo acuity falls by a factor of 13 

(Fendick and Westheimer 1983) in 10 degrees of eccentricity. The M scaling factor 

adopted in this thesis is consistent with the later values. 

The deterioration of contrast coding in the periphery can be explained by the changes 

in the CSF, but the greater extent of deterioration of positional coding is more difficult 

to explain. Bennett and Banks (Bennett and Banks 1987) have suggested that ‘only phase 

shifts that alter contrast should be discriminated in the periphery’, thus relating shift changes with 

changes in the local contrast. This relationship between simple local contrast and phase 

coding was also investigated by Bradcock ((Badcock 1984a, b), who concluded that 

observers may not discriminate relative phase directly, but instead they may find 

differences in the local changes of contrast in the stimuli. 
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Figure 1.21: Ratio of peripheral to foveal thresholds for optimal 
vernier acuity (filled symbols) and for grating acuity (empty 
symbols) for two subjects. Units are normalised to show the 
increase of task difficulty as a proportion of the foveal task 
difficulty (lines meet the y-axis at y=1). Values of estimates of 
human cortical magnification from Cowley and Rolls (Cowey and 
Rolls 1974) are included (x-symbols). (Taken from Levi et al. 
1985). 

Reading performance becomes quickly impaired with eccentricity. Latham and 

Whitaker (Latham and Whitaker 1996) compared word recognition and reading rates 

for both unrelated words and meaningful sentences viewed foveal and peripherally. 

They concluded that these could be equated by an increase in letter size only in the 

case of unrelated words, implying that periphery is qualitatively inferior to the fovea at 

extracting meaning from sentences. Subjects reading with peripheral vision also 

experience an effect called “visual crowding” that affects reading when letter 

separation is kept constant (Toet and Levi 1992). The effect of destructive interaction 

between adjacent contours (called contour interaction) was studied by Hess et al (Hess 
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et al. 2000). They concluded that results in central vision could be explained by the 

physics of the stimuli, which is not the case for peripheral vision. 

The two parallel systems (transient and sustained) that exist in foveal vision also exist 

(with different distributions) in the periphery (Harwerth and Levi 1978). In the same 

ways as in central vision, these systems are believed to correspond to the parvocellular 

and magnocellular neurons in the LGN, linked to the retinal and cortical visual areas in 

the brain. Data from primates (Daniel and Whitteridge 1961; De Monasterio and 

Gouras 1975) and cat (Kaplan and Shapley 1986) suggests that the distributions of 

neurons that mediate these two systems vary across the visual field, with a 

predominant increase of the (sustained) chromatic system towards the fovea (De 

Monasterio and Gouras 1975). 

The role of SF-channels in peripheral vision has been intensively investigated for letter 

identification (Chung et al. 2002; Chung et al. 1998; Solomon and Pelli 1994) although 

less research has been conducted with complex stimuli (such as natural images 

discrimination) (Peli and Geri 2001). 

1.7. Modelling contrast discrimination 

Much of the basic concepts, ideas and models on how the HVS represents visual 

information are derived from what we know about detection and discrimination of 

spatial patterns. This is because threshold performance offers a good chance of 

isolating parts of complex systems (i.e. only the most sensitive mechanisms of these 

systems are active during threshold performance). Following this rationale, it ought to 

be possible to predict the HVS’s sensitivity to any spatial pattern from sensitivity 
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measures of a relative small and restricted number of patterns (e.g. contrast sensitivity 

function). 

1.7.1. Neural representations 

Early computational models (Marr 1982; Schade 1956) of vision were based on the 

idea that there is a subset of visual neurons whose responses (taken as a collective) 

capture the properties of the visual stimuli. This representation, which condenses the 

effects of the many HVS spatial components, was called the neural image (Robson 

1980). According to these models, different neuron populations may represent 

different types of information (e.g. some neurons may represent some coarse aspects 

of the stimuli and others include some level of detail, as well as colour, motion, depth, 

etc.) depending on the different transformations that occur to the signal along the 

visual pathways. 

One of the most common ways to calculate a neural representation of a given stimuli is 

by using a shift-invariant linear mapping or convolution (Gonzalez and Woods 1992). 

This is equivalent to evaluating the (linear) responses of neurons whose identical 

receptive fields are uniformly spaced, covering the whole region of the stimuli. The fact 

that retina is not uniform (e.g. the highest concentration of receptors is in the fovea) 

means that this kind of analysis is restricted to the relatively small central portion of the 

visual field and places where the distribution of receptors (and cortical areas devoted to 

them) are similar. Since we move our eyes to direct our gaze (and the cortical visual 

power related to it) to places of visual interest, foveal vision remains our main source 

of information. However useful, this analogy between convolutions (shift invariant 

calculations) and neural receptive fields must be taken with caution since it refers to 

behavioural measurements, not real neural receptive fields (Wandell 1995) and the 
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neural representation (or neural image) is a computational tool (not the same as having 

a “picture” of the visual stimuli inside the head). 

1.7.2. Linespread functions and vector-length calculations 

To perform the shift-invariant linear mapping of the input stimuli, we need to decide 

the shape of the convolution operator or linespread function. These operators are 

traditionally based on models of receptive fields of retinal ganglion cells (Schade 1956) 

(e.g. difference of Gaussians (Enroth-Cugell and Robson 1966; Rodieck 1965)), which 

are maximally sensitive to certain SFs and have contrast sensitivity functions that 

resemble those of retinal ganglion cells -as shown in Figure 1.13 and Figure 1.15. After 

the convolution operator has been defined, the amplitude of the neural image (at 

detection threshold) has to be decided based on the responses of individual operators 

(neurons). Since detectability has to be related to the pooled responses across the 

neural image, not the response of a single neuron n, a possible solution is to add all the 

squared responses of the receptors and to form a squared neural image (Graham et al. 

1978): 

( ) ∑=
i

inimageneural 22_  

Equation 1.2 

The squaring of the neural image has the advantage of removing the sign of the 

individual neuron responses (which are unimportant, since any deviation, positive or 

negative, from the mean firing rate of real neurons should indicate a detection). The 

criterion for deciding the exponent in the previous equation, which determines the 

stimulus visibility, is extremely important and varies from author to author. In Section 

4.2.4 we present a slightly different approach. 
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A different convolution kernel will produce a different shift-invariant linear 

transformation of the original image (and a different neural representation). As we 

have seen before, there is strong evidence of the presence of SF-channels, which are 

maximally sensitive to a small range (or band) of SFs and interact with one another. A 

complete model of contrast detection should consider this and produce several neural 

images; each corresponding to neurons with different SF-bandwidths, and the decision 

process should be based on a pooling of all their outputs (multi-resolution image). In the 

case of contrast discrimination, the decision should be based upon information collected 

from two input images, the test and reference images. Psychophysical evidence on 

pattern adaptation (Blakemore and Campbell 1969) and detection/discrimination of 

square-wave gratings (Campbell and Robson 1968) support this idea of a multiple 

channel representation. In the later study, Campbell and Robson demonstrated that the 

different harmonics of a square-wave grating are encoded by different SF-channels. 

1.7.3. Masking and facilitation effects: the dipper function 

Several workers (Campbell and Kulikowski 1966; Legge and Foley 1980; Nachmias and 

Sansbury 1974; Tolhurst and Barfield 1978) measured the contrast needed to detect a 

sinusoidal target grating of fixed SF as a function of the contrast of another (masking 

pattern) superimposed to it. Figure 1.22 shows a plot of such results from Legge and 

Foley (Legge and Foley 1980). When the masking pattern or pedestal has low contrast 

and similar SF as the target pattern, it facilitates the detection and the opposite occurs 

when the masking pattern is of high contrast. 

The two effects (masking and facilitation) determine the “dipper” shape of the curve. 

The masking effect is reduced when the SF of the mask and test stimuli differ by a 

factor greatly than 3 (De Valois 1977a, b). These pedestal effects can be incorporated 
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into a contrast discrimination model (see Section 4.2), along with more sophisticated 

assumptions such as convolution kernels that are maximally sensitive to certain 

orientations, neural noise (Gorea and Sagi 2001), and increasingly complex decision 

making rules (Ahumada et al. 1998; Ahumada et al. 1995; Daly 1992; Foley and Legge 

1981; Watson 1983; Watson and Solomon 1997). 

 

Figure 1.22: Contrast needed to detect a 2 cycles/deg grating as a 
function of the contrast of a second, superimposed grating 

(masking pattern). The different lines represent the SF of the 
masking grating. (From Legge and Foley 1980). 

1.7.4. Model’s predictions of  psychophysical data 

Since it is more difficult to compare the performance of these multi-resolution models 

(i.e. models that rely on a collection of component neural images, each representing a 

SF narrow-band “channel” and orientation) with psychophysical data, most of their 

predictions come from computer simulations. However, several authors (Menendez 

and Peli 1995; Rohaly et al. 1997; Watson 1993b) have published reviews of popular 
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vision models for detection, recognition and image difference metrics, and their ability 

to predict psychophysically measured data. 

Brady and Field (Brady and Field 1995) were able to predict contrast constancy results (i.e. 

the ability of observers to perceive objects as maintaining a constant contrast 

independently of size or distance) by using a model where channels’ SF bandwidths 

increase with SF and peak sensitivity is equal across SF. 

Peli (Peli 1996) used a definition of local band-limited contrast (see Section 4.2.1) that 

agrees with perceived contrast (Peli 1990) as the basis for a model of contrast 

discrimination. Simulations of distant views were produced using the CSF of observers 

who were later asked to distinguish the simulations from the originals at increasingly 

longer distances. The model predicted the distance at which the simulation started to 

appear indistinguishable from the original image. 

Watson and Solomon (Watson and Solomon 1995) fitted a contrast model to 

psychophysical measures (thresholds for a Gabor patch masked by gratings of various 

orientations or combinations of orientations) produced by Foley (Foley 1994). Their 

model used Gabor filters with octave bandwidths at eight different orientations as 

operators. Excitatory and inhibitory nonlinearities were modelled as power functions 

with exponents of 2.4 and 2. The decision was based on a Minkowski pooling (also 

called generalised vector magnitude -see Equation 4.10 later in Chapter 4) of the outputs 

with an exponent of 4. 

Tadmor and Tolhurst (Tadmor and Tolhurst 1994; Tolhurst and Tadmor 1997) 

modelled the discrimination of changes in the Fourier amplitude slope of natural and 
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synthetic images using a local contrast discrimination model, which compares the 

contrast within restricted SF bands using circularly symmetric kernel operators. 

Rohaly et al (Rohaly et al. 1997) compared the performance of three models that predict 

image discriminability (the visibility of the difference between pairs of images). These 

were (a) a multiple channel model where the effects of within-channel masking were 

implemented; (b) a single-channel contrast sensitivity model and (c) a simple arithmetic 

difference metric between images. They also explored the effects of altering the 

exponent of the Minkowski summation (see Equation 4.10) used to combine the 

responses of channels/receptors and the inclusion of arbitrary contrast gain factors. 

They found that all models would produce reasonable predictions (the best exponent 

for the Minkowski sum was 4); especially after the addition of contrast gain factors. 

1.8. Naturalistic stimuli 

Although much has been learnt about the visual system from the use of simple spots 

of light, bars or gratings as stimuli in vision research, these do not represent the type of 

visual environment that shaped the properties of the visual system throughout its 

evolution and postnatal development. Such stimuli (called natural images) have particular 

and more complex properties. For example, natural images have very low ranges of 

contrast, compared to physiological or psychophysical artificial stimuli. This means that 

it might not be possible to predict the responses of simple cells to natural stimuli based 

on the responses to artificial stimuli (Brady and Field 2000; Tadmor and Tolhurst 

2000). Besides this, for much that the traditional research methods tell us much about 

the responses of simple cells, they say nothing about the possible reasons why these 

cells have evolved to behave in the way they do. 
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1.8.1. Natural images and ecological tasks 

If we assume that the primary role of any visual system is to improve the chances of 

survival for an organism by aiding it to navigate, find food or suitable mates, avoid 

predators, etc. then it makes sense to study vision and the visual environment in the 

presence of such ecologically-relevant tasks. Under this view, it is fundamental to 

identify properties of the natural environment that are relevant for these tasks (e.g. 

finding food in the forest). Some workers put forward the notion that colour vision in 

primates has evolved to aid them in finding food (Dominy and Lucas 2001; Mollon 

1989, 1991; Sumner and Mollon 2000a, b). If this is the case, then it is important to 

study the colour statistical properties of images from the foraging environment where 

primates find their food, which may be different from the rest of the visual scenes in 

many respects. For example, tropical jungle environments are characterised by high 

tree canopies. Here, part of the direct light coming from the sun is filtered by the 

leaves before reaching the ground, some light is subject to multiple reflections and 

some shines though gaps in the vegetation producing a characteristic “dappling”. The 

light passing though the leaves or reflected from the leaves is likely to be spectrally 

biased towards the green regions of the visual spectrum, while light coming from the 

sky is likely to be bluish. This bias towards blue regions is stronger in cloudy days. The 

overall effect of these interactions is to produce strong bluish-greenish shadows 

alternating with large luminance variations in the illumination, up in the canopy and on 

the ground. A visual system optimised for foraging in these conditions may benefit 

from removing the effect of the dappling and compensating for changes in the colour 

of light. Other activities such as identifying members of your own species or detecting 

rapid changes in the local distribution of luminance (as may occur when there is a 
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sudden movement) are also ecologically-relevant visual tasks, which should be taken 

into consideration when studying the natural environment. 

Another view emphasizes that the HVS seems to be adequate at performing a variety 

of tasks and its main advantage seems to be its flexibility in adapting to many 

requirements. This has prompted many researchers (see below) to study some of the 

most common properties of natural scenes, based on information theory (Shannon 

and Weaver 1949) assumptions that apply indiscriminately to all images, regardless of 

the environmental conditions or particular visual task. In this view, it is the stimulus-

response specificity of single visual neurons what makes them efficient at coding 

features in all natural scenes. Although “efficiency” has yet to be defined, this proposal 

has prevailed in the mainstream vision community. “Optimality” is measured by means 

of some kind of informational-processing goal such as reducing the “wastage” in visual 

channels or reducing the signal-to-noise ratio in neurons, etc. 

1.8.2. Redundancy reduction 

The simplest kinds of statistics to analyse on digital images are based on local 

brightness intensity (pixel grey levels) and are called first order statistics. They refer to 

means, variance and probability distributions of brightness. A more complex way of 

analysing an image includes studying the inter-relations between each pixel and its 

neighbours (e.g. how does a pixel value depends on that of its neighbours?). These 

relationships are called second order statistics. 

Natural images contain complex statistical regularities (in terms of redundancy, power 

spectra, variance, phase spectra, etc.) that provide a very different input from that of 

bars, spots or gratings. The idea that the statistics of sensory stimuli we receive from 
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the environment are important for perception and cognition started to gain 

momentum at the end of the XIX century (see Barlow (Barlow 2001) for a review) and 

achieved extra force after the theory of communication was introduced by Shannon 

and Weaver in 1949 (Shannon and Weaver 1949). From there, concepts like channel 

capacity, information and redundancy started to influence vision scientists. Many theories of 

efficient coding have been put forward since. 

One of the most influential theories of visual efficient coding is centred on a principle 

called redundancy reduction (Attneave 1954; Barlow 1961). According to information 

theory, redundancy is what wastes channel capacity (it is the difference between the 

entropy of the messages actually transmitted and the maximum entropy that the 

channel could actually transmit) (Barlow 2001). This theory argues that the removal of 

redundant statistical structure in the sensory input is the main aim of the sensory 

neurons. The concept of redundancy is related to the predictability of certain structures 

in the natural visual input. For example, in natural scenes it is very often the case that 

once we know the luminance of one point we can predict the luminance of most of the 

nearby points (i.e. they are highly correlated). Psychophysical measurements of 

redundancy in monochromatic images were obtained by Kersten (Kersten 1987). He 

asked observers to reconstruct partially corrupted images using their innate knowledge 

of the structure of natural scenes and estimated that about 46% to 74% of the 

information present in his natural scenes was redundant. Redundancy removal is 

different from selective coding, where some information is deliberately discarded by 

the HVS for a reason (e.g. it is biologically unimportant). When redundancy is reduced, 

full reconstruction of the original image is possible, thus, no information is lost. Barlow 

(Barlow 2001) later reviewed these assumptions and concluded that redundancy is not 

something completely useless which can be safely stripped from the visual 
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environment. In his view, it is more important for an animal to identify what is 

redundant in its sensory messages and use it to gather important clues about the 

structure and statistical properties of the environment. 

Since the ratio of photoreceptors to optic nerve fibres is high, it has been suggested 

that retinal coding represents a redundancy reduction that compresses the information 

into a channel of limited capacity (Atick and Redlich 1992; Srinivasan et al. 1982). 

However, the channel capacity increases in the cortex, this meaning that redundancy 

must also increase at these stages (since information cannot be created). Barlow has 

argued that sensory coding “should convert hidden redundancy into a manifest, explicit 

immediately recognisable form, rather than reduce or eliminate it” (Barlow 2001). 

Redundancy reduction is still important, although other ideas have been incorporated 

to account for the fact that the brain is not just a communications device. For example, 

there might be cases where a simple compression is not the best way to exploit 

statistical structure and some knowledge of the environmental properties may help to 

match the characteristics of the detector to these properties (and thus reduce the 

signal-to-noise ratio of the process) (Barlow 2001). 

1.8.3. Second order redundancy 

The information content in natural scenes (statistical regularities that distinguish them 

from random noise), either static or dynamic (movie sequences) (Dong and Attick 

1995) has been the subject of various studies. Many of these studies have concentrated 

on the variability contained in the signal as a function of the spatial frequency (also 

called second order correlation or power spectra) of monochrome natural images (Burton 

and Moorhead 1987; Carlson 1978; Field 1987; Párraga et al. 1998a; Tolhurst et al. 
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1992). The analysis of the properties of the Fourier domain led to the discovery of 

second order redundancy. 

The most commonly used quantitative measure of second order-redundancy (e.g. the 

dependency of a pixel intensity to that of its neighbours) is the autocorrelation function 

(Field 1987). This function measures the average of the product of the intensity at two 

positions as a function of their separation. Typically, autocorrelation falls with relative 

distance. Correlation measures assume that the statistics of natural images are translation 

invariant. This means that the presence of strong features that occur typically at certain 

positions (such as horizon and sky usually appearing at the top) would upset this 

measure (Ruderman 1997). The assumption of translation invariance allows us to 

decorrelate the images by transforming them into the frequency (Fourier) domain. 

Television engineers (Kretzmer 1952) discovered empirically that the power spectrum of 

TV images approximately follows a simple relationship: Fourier power = 1/f 2; where f 

is the spatial frequency (in cycles/degree of viewing or cycles/picture) and all 

orientation dependencies are ignored (averaged) in the analysis. The power spectrum is 

related to the autocorrelation function through the Fourier transform (Gonzalez and 

Woods 1992). The same equation can be expressed in terms of the Fourier amplitude 

spectrum (which is the square root of power). 

Fourier amplitude = 1/f α 

Equation 1.3 

The exponent (α) of f in Equation 1.3 was measured for a small sample of achromatic 

natural scenes by Field (Field 1987) and found to be around 1 (2 in the case of power 

spectrum). Figure 1.23 shows a cylindrical plot (Fourier amplitude is represented on the 
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vertical axis, SF is measured by the perpendicular distance to this axis and orientation is 

determined by the angle θ ) the of the Fourier amplitude of one of such images. 

More exhaustive measures (using larger databases of calibrated achromatic images) 

have shown that the average exponent α is closer to 1.2 (Párraga et al. 1998a; 

Ruderman 1995; Tolhurst et al. 1992) and that there are substantial variations among 

individual images (Langer 2000; Van Der Schaaf and Van Hateren 1996). An exponent 

α equal to 1 means that each octave in spatial frequency f contains the same amount of 

Fourier power. A smaller value of α means that there is proportionally more power in 

the short distance details of the image, etc. This proximity of the α to unitary value is 

related to a property of natural scenes called “scale invariance” (the statistical structure 

of the image is independent of the pixel size). 

 

Figure 1.23: Plot of the two dimensional amplitude spectrum of a 
typical natural image. The scheme on the right illustrates the 
meanings of the axis. The centre of the plot represents 0 spatial 
frequency (mean amplitude of the image). For the sake of clarity, 
a smaller grid of 32x32 points is shown. (From Field 1987). 

Figure 1.24 shows Fourier amplitude plots corresponding to four natural scenes. Each 

point was obtained by averaging across orientations (the same as averaging along the 

SF-constant circles in Figure 1.23). The values are plotted on a log-log co-ordinate axis, 
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which is best to show the 1/f α dependency. Lines show the corresponding fitted 1/f α 

functions (notice how the measured amplitude slope depends of the large 

concentration of high-SF points near the right side). 

 

Figure 1.24: Double-logarithmic plots of Fourier amplitude 
spectra of four different natural scenes (averaged across 
orientations). (From Tolhurst et al. 1992). 

The environmental causes of the power law (or 1/f α law) in natural scenes have been 

the subject of much speculation. Some authors argue that they are a product of scale 

invariance in the natural visual world (Field 1987, 1990). Others argued that this 

property is because of the presence of edges in images (since edges themselves obey a 

power law spectral distribution) (Carlson 1978). Ruderman (Ruderman 1997) argued 

that scale invariance of natural scenes comes from the superimposition of statistically 

independent objects (surfaces in 2-dimensions) with power-law distributions of sizes. 

Balboa and Grzywacz refuted this hypothesis arguing that a power-law distribution of 

sizes in natural images is not constrained to produce scale-invariant images (Balboa et 
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al. 2001). The premise behind these analyses is that the HVS should be optimised or 

“tuned” to extract information from the natural visual environment, thus exploiting 

any statistical regularity. 

1.8.4. The “ecological approach” 

The idea that efficiency in the information representation by the brain potentially has 

evolutionary advantages can be used as a design principle to predict neural processing. 

This approach can be called ‘ecological’ since it attempts to predict neural processing from physical 

properties of the stimulus environment (Atick 1992). 

Does the visual system take advantage of the structure present in natural scenes? 

Several authors (Atick 1992; Barlow 2001; Field 1994; Laughlin 1981; Srinivasan et al. 

1982; Van Hateren 1992b) have argued that it is possible to take account of signal 

redundancy and produce a neural encoding where it is minimised, thus improving the 

efficiency. Srinivasan et al (Srinivasan et al. 1982) proposed that the size of retinal 

receptive fields could be estimated from the amount of subtractive inhibition necessary 

to cancel out the correlation in natural scenes. They compared the predicted inhibitory 

receptive fields surround to that measured from the compound eye of the fly and both 

agreed. Further research (Van Hateren 1992b) considered the presence of white 

photoreceptor noise and changes in the system to account for variations in the signal-

to-noise ratios at lower luminance levels. Attick (Atick 1992) has reviewed the uses of 

information theory as the basis for an approach to neural computing. He examined 

cases where this approach has been successful in predicting coding strategies 

(mammalian retina and fly’s LCM -Large Monopolar Cells). 
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Psychophysical measures of the discriminability of natural images were made by Knill 

et al (Knill et al. 1990). They imposed Fourier amplitude spectra consistent with a 

power law to synthetic images and measured observers’ performance in discriminating 

between images of slightly different slopes. Other workers (Tadmor and Tolhurst 

1994) considered these slope-modified synthetic images to be inadequate as natural 

visual stimuli. Slope-modified synthetic images produced lower discrimination 

thresholds than real natural images. They were also perceived to be at best quality when 

filtered with less steeper amplitude slope (α= 0.5) than that corresponding to natural 

images (α=0.8-1.5). The reason for this may be the lack of a complete randomness 

(possible anisotropy) in the distribution of energy with spatial orientation that may 

exist in real natural images as opposed to synthetic images. Tolhurst and Tadmor 

(Tolhurst and Tadmor 1997) proposed a SF-band limited model of contrast, which 

explains their measured thresholds for detecting changes in the slope of natural scenes. 

They argued that observers might perform this task by detecting changes in contrast 

within a single SF narrow-band. Further research (Párraga and Tolhurst 2000) 

concluded that observers do not usually detect changes in contrast within a single 

narrow band; rather, they do compare contrast between at least two bands. 

Human horizontal retinal cells have also been studied in an ecological context. Balboa 

and Grzywacz (Balboa and Grzywacz 2000a, b) proposed that the role of early lateral 

inhibition is to deal with noise without missing relevant clues from the visual world, 

especially, the occlusion boundaries between objects. 

Geisler et al (Geisler et al. 2001) examined the statistical properties of contours in 

natural images arguing that these statistics may have driven the contour grouping 
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mechanisms that allow the brain to link local edge elements into global contours. They 

found that contour detection performance might be predicted from these statistics. 

Colour vision scientists have also benefited from the redundancy reduction and 

optimisation hypothesis (Buchsbaum and Gottschalk 1983). Burton and Moorhead 

(Burton and Moorhead 1987) analysed a set of nineteen natural scenes in terms of the 

L, M, and S relative cone absorption and found high levels of correlation between the 

signals from the red-and green-sensitive cones. They pointed out that this correlation 

could be removed by a linear mapping into three new channels, two carrying chromatic 

information and one carrying luminance information, as suggested by Buchsbaum and 

Gottschalk (Buchsbaum and Gottschalk 1983). Ruderman et al (Ruderman et al. 1998) 

examined the statistical properties of a hyperspectral10 image dataset of foliage and 

concluded that the principal component axes of the dataset lay along directions (in 

terms of the L, M and S cone responses) very similar to the chromatically opponent 

mechanisms discussed in previous sections. However, it is worth noting that the L-M 

opponent channel encoded very little variance. Multiscaling properties were also found 

in hyperspectral images (Turiel et al. 2000). 

Clement and Moorhead (Clement and Moorhead 2000) pointed out that there exists an 

analogy between the redundancy introduced by the spectral overlap of the three (L, M 

and S) cone receptors (later removed by the chromatically-opponent mechanisms) and 

the spatial sampling of the SF-channels (also overlapping in SF-space). They 

investigated what aspects of the natural environment are captured by decorrelating the 

SF-channels and found filters whose properties may explain the subjective appearance 

of some visual stimuli. 
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Nascimento et al (Nascimento et al. 2002) studied the reflectance properties of 30 

natural scenes and concluded that spatial L and M cone-excitation ratios were 

remarkably invariant across different illuminants. They suggested that this may 

represent a reliable property of the visual environment and may form the foundation 

for visual colour constancy11. 

Other attempts to relate the spatio-chromatic properties of the visual environment and 

those of the HVS was made by Párraga et al (Párraga et al. 1998a). They analysed the 

achromatic and L-M chromatic properties of a data set of 29 natural scenes in terms of 

the distribution of Fourier amplitude along the SF spectrum and reported that this 

distribution did not match the (psychophysically measured) SF filtering characteristics 

(Mullen 1985) of both luminance and L-M chromatic channels in the parvocellular 

visual pathway. To model the luminance and L-M chromatic channels, they employed 

four different sets of weightings for the combinations of L and M receptors outputs 

based on different criteria (Buchsbaum and Gottschalk 1983; Ingling and Tsou 1988). 

Although the ecological approach predicted a higher content of low-SF energy in the 

chromatic image representations than in the achromatic representations, they reported 

no difference in the spatial properties of the scenes between these signals. This failure 

to find a match between the spatio-chromatic properties of the HVS and those of 

natural scenes may be caused by analysing images without considering any specific task 

for the visual system. If primate colour vision has evolved for specific tasks such as 

finding red fruit in the forest, it would be critical to analyse spatio-chromatic properties 

of natural images in view of such task (i.e. images of red fruit and green leaves). 

 
10 Each pixel is calculated from many (usually 31) spectrally narrowband filtered pixels which sample 

the same region of the image. 
11 Colour constancy is a fundamental cortical mechanism that compensates for spectral and spatial 

changes in the illumination, keeping the colour of objects more or less constant (Hurlbert A. 1999). 
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1.8.5. Higher order statistics 

Second (and higher-order) redundancies in the code means that the responses of one 

neuron can be predicted from the responses of other neurons. If these correlations are 

among groups of three or more neurons, they constitute higher-order redundancy. 

Higher order redundancy is directly related to the phase spectra of natural scenes. 

Information redundancy was measured for a large ensemble of natural scenes of (only) 

64 greylevels by Petrov and Zhaoping (Petrov and Zhaoping 2003). They found that 2-

pixel correlations produce about 50% of the total redundancy while 3-pixel correlations 

have only a marginal effect (4%). 

The scale invariance of the Fourier amplitude (or power) spectrum is the simplest 

regularity that natural images possess. Although very convenient, the analysis of the 

Fourier amplitude spectra provides by no means a complete characterisation of natural 

scenes. The influence of the phase spectra on natural images was reported by 

Piotrowski and Campbell (Piotrowski and Campbell 1982). Tadmor and Tolhurst 

(Tadmor and Tolhurst 1993) investigated the effects of swapping the amplitude and 

phase spectra of a natural image with those of another. They found that ‘although the 

average amplitude spectra of different natural images may be similar in their overall form, a realistic 

description of the amplitude spectra must also incorporate the particular way in which the energy is 

distributed across different orientations’. 

To distinguish a natural scene from the next we also need to characterise their phase 

spectra. The phase structure of natural scenes has proven quite difficult to characterise. 

A number of authors (Ruderman 1995; Thomson 1999a, b) have investigated their 

phase (also called higher-order statistics) structure and found some invariant 

properties. 
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1.8.6. Natural images and cortical processing 

Much of the research on natural images is devoted to derive a set of linear basis 

functions that remove image redundancy and that are similar to the receptive fields 

found in the primary visual cortex (Field 1987; Hancock et al. 1992; Olshausen and 

Field 1996; Shouval et al. 1997; Wachtler et al. 2001). To resemble cortical visual cells, 

these basis functions (filters) have to be SF band-pass, spatially oriented, localised and 

symmetric. 

An important attempt to relate the statistical structure of the environment to the 

coding (derived the narrowly tuned channel mechanisms) of the visual system was 

made by Field (Field 1987). He considered the statistics of six achromatic scenes from 

the natural environment and compared various coding schemes on how they represent 

information in such natural scenes. Field based his analysis on a model of the 

behaviour of cortical cells derived from principles from information theory (Shannon 

and Weaver 1949) and Gabor's (Gabor 1946) theory of communication. Field labels as 

"sensors" individual Gabor functions located at a point within the scene and 

representing a single hypothetical cortex cell. He organised these sensors into 

"channels" (spatial arrays of sensors tuned to a common orientation and SF). He 

concluded that such a collection of channels with SF-bandwidths constant in octaves 

and orientation bandwidths constant in degrees produces an even distribution of the 

information (from the set of six scenes) across the array. Figure 1.25 shows the 

relations between the size of a channel in the frequency domain and the size and 

spacing in the space domain. 
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Figure 1.25: Fields channels represented in the frequency domain 
and in the space domain. A channel with a bandwidth ∆F in the 
frequency domain consists of an array of sensors with a width 
∆W in the space domain. (Taken from Field 1987). 

Field found the optimal SF-bandwidth to be in the range 0.5 to 1.5 octaves. In 

addition, the optimal constant ratio between SF and orientation bandwidth (measured 

in the two-dimensional Fourier space) was found to lie between 0.5 and 1.0. This is 

despite the fact that Field’s model of evenly distributed channels over a rigid sensor 

grid does not reflect the variability in the spatial frequency tuning of different cortical 

cells (De Valois et al. 1982a). 

Hancock et al (Hancock et al. 1992) investigated the distribution of variance in fifteen 

natural images using principal components analysis (PCA). PCA is a form of factor 

analysis that conveys the most information from the image using a limited number of 

linear descriptors. The very first components are the linear descriptors that convey 

most of the image information. In the dataset that they analysed, Hancock et al found a 

bias towards vertical and (to lesser extent) horizontal orientations. This was confirmed 

by other research (Van Der Schaaf and Van Hateren 1996). Coppola et al (Coppola et 

al. 1998) analysed a larger image dataset (150 pictures, 3 different types of visual 
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environment: outdoor, indoor and “natural”) and found that there are differences in 

the distribution of oriented contours between the different types of scenes. 

Another commonly used technique to remove correlations between pairs of neurons 

(second order correlations) is called independent component analysis (ICA) (Bell and 

Sejnowski 1995). This technique has the advantage of reducing higher order 

dependencies (although it increases the first-order redundancy, which may lead to an 

increase of overall redundancy). It also provides a good account of the receptive fields 

properties of mammalian visual cortex (Bell and Sejnowski 1997; Fyfe and Baddeley 

1995; Van Hateren and Ruderman 1998; Van Hateren and Van Der Schaaf 1998; 

Wachtler et al. 2001). 

Field’s efficiency criterion was re-examined to take into account the sparseness (i.e. only 

a small subset of is active to respond to each stimulus, thus reducing the number of 

action potentials at any time) of the set of cortical cells (Field 1994). Learning rules that 

produce sparse-coding for natural images were introduced later by Olshausen and Field 

(Olshausen and Field 1997). This algorithm is related to ICA (Bell and Sejnowski 1997) 

and produced ‘receptive fields’ that are similar to those of simple cells (Van Hateren 

and Van Der Schaaf 1998). 

Field and Brady (Field and Brady 1997) identified physical blur (with the consequent 

loss of high-SF energy) and the variability in the density of structure as a major source of 

variability of the Fourier power spectra of natural scenes. They noticed that white noise 

(which does not follow a power law) appears perceptually to be dominated by high 

frequency structure, while noise artificially filtered to follow a power law seems to have 

structure distributed across all spatial scales (Brady and Field 1995). This agrees with 

the idea that the responses of cortical cells are independent of spatial scale (Field 1987) 
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and shows that the same limited dynamic range is present in the cell’s responses across 

spatial scale (Field and Brady 1997). 

Baddeley et al (Baddeley et al. 1997) found an exponential distribution of instantaneous 

firing rates of neurons in primary and inferior temporal visual cortices of cats and 

monkeys when visually stimulated with videos of natural scenes. This shows that 

neurons maximise their information-carrying capacity (with a fixed, long-term-average 

firing rate), consistently with an optimal coding. 

1.8.7. General stimuli versus specific stimuli 

The ecological approach to vision research combined with a widespread availability of 

naturalistic stimuli databases (Chiao et al. 2000a; Párraga et al. 1998a; Ruderman et al. 

1998) has lead to a great progress in our understanding of the relationship between the 

properties of the HVS and the environment by treating the it as a simple 

communications device (i.e. information-theory based studies) (Attneave 1954; Barlow 

1961). Many properties of the HVS can be explained by this approach; these include 

compression (Atick and Redlich 1992; Srinivasan et al. 1982) of the visual information 

before transmission through the optic nerve, match between the range of contrast 

found in the natural world and neuronal response ranges (Laughlin 1981; Tadmor and 

Tolhurst 2000), etc. In these cases, the criterion for efficiency was usually borrowed 

from signal processing theory (redundancy, entropy, signal-to-noise ratio, etc.). In 

other cases, the efficiency criteria may include more complex items, such as even 

distribution (Field 1987) of Fourier energy across a set of neuronal receptors maximally 

sensitive to given bandwidths and orientations or maximum reduction (Olshausen and 

Field 1996, 1997) of the number of active neurons at any moment (sparseness), etc. 

However successful these efficiency criteria may be, an analysis of the HVS and its 
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optimisation to the properties of the natural environment needs to be based in a 

reliable definition of what it is to be efficient (see Section1.2). For example, it is unclear 

what the significance of a match between the properties of the HVS and the second-

order statistics of natural scenes may be, since nobody knows the advantage of 

detecting deviations from this average “natural” structure. Moreover, the distribution 

of energy in the Fourier spectrum for natural scenes has been reported to be nearly the 

same across images that look completely different. It is necessary at this point to 

introduce the idea of a task-related efficiency criterion. Under this view, a system is 

optimised when it performs an ecologically-relevant task in an efficient manner. For 

example, one could (psychophysically) measure visual performance in ecologically-

relevant visual tasks that involve stimuli obtained from photographs of natural scenes 

and later repeat the task with statistics that deviate more or less from those of truly 

natural scenes. Best performance (optimality) in the task when the stimuli have natural 

rather than “unnatural” statistics will suggest that the visual system does work best 

with natural scenes, and therefore, is more efficient at coding the features found in 

natural scenes. 

Examples of how vision scientists are starting to consider naturalistic stimuli in terms 

of their ecological significance are the studies of colour spectral sensitivities of human 

photoreceptors matching to the characteristics of visual input. The wavelength 

distribution of most natural visual input extends over the whole spectrum (Stiles et al. 

1977), thus making it possible to represent most of its variance with only three 

photoreceptors (Maloney 1986). The problem with primate photoreceptors is that their 

sensitivity is not evenly spread across the spectrum, making them not optimal, as is the 

case of some animals (Wright and Bowmaker 2001). This inefficient sampling of the 

colour spectra was confirmed by Nagle and Osorio (Nagle and Osorio 1993), who 
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found that the tuning of human photoreceptors might minimize (instead of 

maximising) red-green chromatic signals in natural conditions. Mollon (Mollon 1991) 

proposed a solution for this problem, considering that the L and M photoreceptors 

evolved for the purpose of aiding primates to distinguish reddish fruit against a 

background of leaves. Analysis of the coloration of specific (and ecologically-relevant) 

visual stimuli supported Mollon’s ideas (Osorio and Vorobyev 1996; Regan et al. 1998). 

Other authors (Dominy and Lucas 2001) support the idea that the L-M opponent 

signal is optimal for detecting the youngest and most edible leaves from plants. 

The differences between the general stimuli approach, which considers the brain as a 

communications device and the specific stimuli approach, which tends to view the 

brain as a decision device become apparent after we consider the visual tasks that drive 

the evolution of the HVS. 

1.9. What are the visual tasks that drive the evolution of  the 

HVS? 

In our view, optimality is related to performing an ecologically-relevant visual task in 

the most efficient way. This leads us to the following question: what are the visual tasks 

that drive the evolution of the HVS? The answer is not a simple one, but it can be 

summarised in three categories as follows: 

1.9.1. Vision and attention 

It is known from studies of the relationship between attention and perception 

(inattentional blindness (Mack et al. 1992; Moore and Egeth 1997; Newby and Rock 

1998) and change blindness (Becken and Cervone 1983; Littman and Becklen 1976; 

Simons and Chabris 1999)) that without the observer’s attention, most features of the 
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visual environment are not consciously perceived12 at all. For example, Simons and 

Chabris (Simons and Chabris 1999) using naturalistic stimuli, showed that about half of 

the observers failed to notice a highly salient and unexpected event when engaged in a 

monitoring task on a display screen, implying that only the features of the visual 

environment that receive our attention are encoded, processed and retained in the 

memory. These failures to notice events outside the region of attentional focus point 

out to the fact that, although all the information in the visual field is potentially 

available for attentive processing, only a small region is processed at any time. The 

environment acts in fact as an information storage device that our eyes use to search 

and retrieve what it is useful, saving the visual system the burden of having to process 

all the information contained in the visual field, allowing it to concentrate its power in 

a much smaller region. However, there are instances when meaningful stimuli (such as 

smiley faces or the observer’s own name) are detected, suggesting that although not 

consciously perceiving visual features, the observer can perceive their meaning (Rubin 

and Hua 1998). To act like this, processing only a fraction of the information imaged 

on the retina, our visual system needs to assume that somehow the general properties 

of the visual environment do not change dramatically over a short period. Apparently, 

this is the general case, since changes in illumination are generally slow compared with 

the time it takes to move our body, head or perform a saccade. In summary, 

inattentional blindness and change blindness seem to indicate that the task of the visual 

system is not to process information from the whole of the visual field, but only its 

relevant features. 

 
12 Although failing to perceive an object, observers can still be influenced on their performance by the 

object, thus it is necessary to distinguish between ‘conscious’ perception and ‘implicit’ perception. In 
this case, the term refers to the conscious experience of an object’s presence or an event. 
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1.9.2. Vision and action 

However useful, concentrating all the HVS power on a small region of the visual field 

may prove a disadvantage if a predator suddenly appears from outside this attentional 

and processing focus area. This is supported by the fact that, although almost all visual 

functions decline with eccentricity, those related with monitoring change (flicker and 

movement sensitivity) actually improve in the periphery (Baker and Braddick 1985). It 

is as though the major role of peripheral vision is to provide the information required 

for subsequently orienting the movements of the head and the eyes so that the fovea is 

aligned with the region of interest. The orientation of the eyes is done by three 

different systems called the saccadic, pursuit and vergence systems. The saccadic system is 

in charge of rotating the eye, bringing the target on to the fovea. The pursuit system 

allows the eyes to follow a target in motion and the vergence system allows maintaining 

both eyes on a target at different depths (Findlay and Gilchrist 2003). 

Another fundamental task for a visual system is to provide navigational information to 

the brain (which is later passed to the muscles of the body) for many different activities 

such as grasping, walking, climbing, etc. Spatial-memory formation experiments 

(Ludvig et al. 2003) in freely moving New World monkeys show that they are able to 

efficiently generate short- and long-term spatial memories (i.e. they remember the 

positions of baited and non-baited food-ports) of a fixed environment. There is also 

evidence of two separate attentional systems mediating stimuli in the far and near 

(within reach) space (Rizzolatti et al. 1983) in macaque. In humans, evidence of 

separate neural systems concerned with the perception of stimuli in near and far space 

(and the response to them) was produced by Cowey et al (Cowey et al. 1994). This 

supports the idea that spatial awareness (in monkeys) is a combination of several 



 

87

perceptuo-motor systems, each with a different neural representation of space and 

concerned with the movements of eyes, head, arms and body, suggesting that they 

evolved for different tasks (grasping, walking, etc.). 

1.9.3. Detection, discrimination and recognition 

Since all organisms have to gather enough energy to be able to live and reproduce, an 

early ecologically-relevant task for the HVS is to efficiently detect and discriminate the 

best sources of food (foraging). It is also important to recognise members of their own 

species or group and distinguish friends from foes. There is also a need for 

discriminating the best possible mates to reproduce with. Such tasks can be optimally 

performed by concentrating the processing power of the HVS on certain attributes of 

the visual environment and ignoring others. For example, there is evidence that line-

drawing depictions of scenes (edge figures) can lead to similar performance in object 

naming as full-colour photographs (Biederman and Ju 1988). Computer scientists, 

whose algorithms are mostly based on heuristic formulations tailored to solve specific 

problem needs, have exploited the enlarged role of edges in object and pattern 

detection (Campbell et al. 1997; Clark et al. 2000; Marr 1982) and recognition (Gonzalez 

and Woods 1992). Other characteristics of visual scenes that may be extremely useful 

in a foraging task are, for example, shadow distributions that may reveal the shape of 

objects and their relative positions. On the other hand, the HVS may be interested in 

removing the effects of some characteristics of the visual environment that may 

interfere with the foraging task such as daily changes in the spectral distribution or the 

overall illumination levels, the “dappling” effect of shadows, etc. 
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1.10. Specific questions addressed by this dissertation 

The relationship between the “general stimuli” approach and the “specific stimuli” 

approach to human vision in the presence of a visual discrimination/detection task has 

not been explored in depth. This lack of understanding has motivated our research, 

which explores the possible optimisation of the HVS to the spatial and chromatic 

properties of the natural environment, where it is supposed to have evolved. In 

particular, the questions addressed in the next chapters are the following: 

a) Is the foveal achromatic vision in humans optimised for performing 

ecologically-relevant visual discrimination tasks in the presence of 

second-order statistics corresponding to natural scenes? 

b) What are the differences in terms of performance and optimisation 

between foveal and peripheral achromatic vision for the same 

ecologically-relevant discrimination task? 

c) Can the psychophysical performance of the HVS for a visual 

discrimination task in both, periphery and fovea, be replicated by a 

simple multi-resolution model of local contrast discrimination involving 

only “low level” visual processes? 

d) Is the (physiological) imbalance found between the spatial properties of 

the chromatic and achromatic mechanisms of the parvocellular pathway 

reflected in the (statistical) spatial and chromatic properties of natural 

scenes or is it relevant to some specific task? 
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1.11. Published work 

Parts of this dissertation (Párraga et al. 1998c, d; Párraga et al. 1999; Párraga et al. 2000a, 

2002; Párraga et al. 2000b) have been published/presented in scientific journals and 

conferences. 
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C h a p t e r  2  

THE PROPERTIES OF SPATIAL INFORMATION IN NATURAL 
IMAGES AND SPATIAL PROCESSING IN FOVEAL VISION 

Foveal spatial vision: Discriminating small changes in natural images 

2.1. Overview 

The idea that the comprehensive properties of the HVS are not accidents but emerge 

from a close match between evolution (and postnatal experience) and the environment 

where this visual system must function, is a fundamental principle of visual science (Atick 

1992; Barlow 1961; Field 1987; Laughlin 1983; Marr 1982; Srinivasan et al. 1982; Van 

Hateren 1992a). There is evidence for this in insects (Laughlin 1981; Ocarroll et al. 1996; 

Weckstrom and Laughlin 1995), fish (Lythgoe 1991), and marine mammals (Fasick and 

Robinson 2000). 

Evidence of visual optimisation in mammals comes more from theoretical arguments 

(Atick and Redlich 1992; Hancock et al. 1992; Olshausen and Field 1996; Van Hateren and 

Ruderman 1998) than from direct observations (Dan et al. 1996; Lauritzen et al. 1999; 

Vinje and Gallant 2000). These arguments (based on Shannon’s information theory 

(Shannon and Weaver 1949), a review of some of them was presented in the introductory 

chapter), are presented as follows (Atick 1992): 

a) Efficiency (in information theory terms) in the representation of information 

has evolutionary advantages. 
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b) We can reformulate the above principle as: much of the early neural 

processing is optimised to exploit the visual environmental structure (i.e. to 

build efficient representations of the sensory stimuli). 

c) A model designed to maximally exploit the structure of the visual 

environment (within certain biological constraints) can predict neural 

processing. 

Therefore, we can use information theory to assess the efficiency of neural information 

representation. Many authors (Field 1987; Hancock et al. 1992; Olshausen and Field 1996; 

Shouval et al. 1997; Wachtler et al. 2001) have used this design principle to produce models of 

the neural representation of visual information that are efficient in exploiting statistical 

structures of the environment (“ecological” approach). For example, Olshausen and Field 

(Olshausen and Field 1996) have proposed that simple-cell receptive fields properties 

“emerge” by training a neural network to use a coding strategy that maximises sparseness 

(i.e. finding the smallest number of descriptors can represent any given image from the 

natural images dataset). By doing this, they implicitly assume that neural processing is 

optimised to exploit natural image redundancy (the design principle (c)). Nevertheless, to 

be able to claim that the design principle (c) is valid, we need to prove (b) that the HVS 

can really see things better when the statistics of the visual environment correspond to 

those of real natural scenes. This seems like a question with an obvious answer, since we 

have assumed the efficiency principle (a) to be valid (see introductory chapter (Maynard 

Smith 1978; Richardson 1994)), but it is not so. The evidence of an evolutionary 

advantage of efficient representation of the sensory information does not actually prove 

that the HVS is optimised to process the natural statistics of the visual environment. 
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Attempts to prove this optimisation were done by Knill et al (Knill et al. 1990) and 

Tadmor and Tolhurst (Tadmor and Tolhurst 1994). The former measured the ability of 

human observers to discriminate changes in the Fourier slope (α) of synthetic scenes and 

reported that the highest sensitivity was around α values of 1.4-1.8. They suggested that 

the HVS may be tuned to these (rather “unnatural”) statistics. The later did the same 

measure for natural and synthetic scenes. They found that thresholds for the discrimination 

of changes in α were higher (lower sensitivity) when the image statistics were close to 

natural statistics and lower when they were not. This is analogous for a blur discrimination 

task. They interpreted these results as a proof that the HVS is optimised for discriminating 

natural statistics, since such a system is more tolerant to image-distortions, (such as 

changes in pupil diameter, accommodative errors, variance in the environmental statistics, 

etc.) when the image is in focus or has “best quality”. However interesting as these results 

may be, it is not clear whether being able to optimally discriminate between changes in the 

slope of natural scenes constitutes an evolutionary advantage. 

In the present chapter, we will attempt to prove that the HVS is optimised for scenes with 

natural statistics. To do it we expect to demonstrate experimentally that a human can 

perform an evolutionary relevant task better in the presence of natural statistics than in 

the presence of unnatural ones. 

Our approach here is a simple one: to psychophysically measure the performance of 

observers doing a naturalistic visual task in different conditions (with different image 

datasets) where the statistics of the stimuli are gradually modified to be more or less 

“natural”. If the visual system is “optimised” somehow to see best when the image 

statistics are “natural”, then performance for such naturalistic task should be optimally 
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higher. To produce our experimental dataset we used a morphing technique described in the 

following chapters. 

2.1.1. Why use a morphing technique? 

From an evolutionary point of view, it makes sense to be able to discriminate as quickly as 

possible between familiar or unfamiliar faces or between known and unknown (or 

possibly threatening) animals. Following this idea, we have developed a naturalistic, form-

discrimination task, which we believe is a likely exemplar of this kind of activity. The task 

requires an observer to distinguish between slightly different monochrome pictures where 

the component objects differ slightly in shape, position, texture and brightness (see Figure 

2.4). At its core, this requires discrimination of small changes in local contrast of the 

stimuli images. We decided to use a morphing technique (as opposed, for example, to a 

superimposition of two images to different degrees) because it produces a set of stimuli 

where each one of the component pictures is an image of a plausible object, sharing the 

Fourier natural statistics of the original ones. Merging of pictures or of their spectra 

(Tolhurst and Tadmor 2000) produces intermediate images that can arguably be 

considered “unnatural” or unrepresentative of the visual environment, since they contain 

“impossible” (superimposed) objects. Figure 2.1 shows a double-logarithmic plot of the 

Fourier amplitude for the two reference pictures of the morph sequence car-to-bull (car 

and bull) and an exemplary intermediate one. 

Each point in the figure represents the average Fourier amplitude across all orientations 

for a given SF. All three plots share remarkably similar second-order statistics (linear plots 

with very similar slopes on a log-log axis, as discussed in the introductory chapter), which 

indicates that the morphing process does not produce unnatural stimuli in the statistical 
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sense. Besides, morphing allows good experimental control because it provides a way to 

introduce very small changes in a sequence (less than 0.1%) in linear steps. 

 

Figure 2.1: Logarithmic plot of Fourier amplitude for three pictures 
of the sequence car-to-bull. Both reference pictures (car and bull) 
were compared with an intermediate one (monster). The bump 
around 40-50 cycles/pic corresponds to the car’s radiator. 

In this experiment, our observer must discriminate visually between pictures of very 

similar faces or objects. We wanted to know whether the ability of the observer to 

perform this task would be degraded if the spatial contrast of the pictures is made 

unnatural in some way. Figure 2.2 shows an example of the kind of modification to the 

Fourier spectrum of the pictures that was made in order to make them more or less 

“unnatural”. We decrease (Figure 2.2a) or increase (Figure 2.2b) the slopes of the 

amplitude spectra of all the pictures within a sequence to alter their second-order statistics. 

If performance is optimal when the second-order statistics correspond to those of natural 

scenes, we may be able to conclude that those statistics have been important in shaping 

the function of the HVS. 
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Figure 2.2: Effects of changes to the slope of the amplitude spectrum 
on part of the car-to-bull sequence. Part a shows the effects of a 
positive increment of the slope and part b shows the effects of a 
negative increment. The positive increment produces a picture that 
resembles a “blurring” and the negative increment resembles a 
“whitening”. 

The differences in overall contrast between the two sets of images in Figure 2.2 reflect the 

limits imposed by the dynamic range of the digital imaging device and the quality of the 

paper printouts. There are also limits imposed by the dynamic range of the monitor in 

which the images were presented. The effects of these are discussed below. 

There are many ways of altering the natural statistics of digitised images. Another 

common way of producing “unnatural” visual images is to alter the Fourier phase spectrum 

(Párraga et al. 1998b; Tadmor and Tolhurst 1993; Thomson 2001) by filtering it or 

randomising it. A reason not to apply any filtering or randomisation to the phase spectra 

of our morph sequences is that morphing itself modifies the phase spectra of natural images, since 

it alters local values of brightness in the picture. By asking observers to perform a visual 
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discrimination task in this morph/phase domain, while gradually modifying the amplitude 

spectra, we can manipulate these two dimensions independently of each other. 

2.1.2. Effects of  eye movements in scene perception 

For an observer to be able to perform this task, she must move her eyes and find the 

region of the image where contrast changes are more salient. This points to an issue 

arising from eye movements: there is a strong sensitivity loss during rapid jumps of eye 

position or saccades. Saccades can be very quick (up to 500° per second) but our eyes 

remain relatively still between saccades(Rayner 1998). Typical mean fixation duration 

times are, for visual search tasks, 275 msec and for scene perception tasks, 330 msec, with 

mean saccade sizes of 3° for the first and 4° for the second (Rayner 1998). The loss of 

sensitivity (effect of neural, rather than optical factors) during a saccade is called saccadic 

suppression (Rayner 1998) and is related to the motion (magno) pathway since it occurs 

mainly for low-SF achromatic patterns (Volkman et al. 1978) and not for coloured edges 

(Burr et al. 1994). It has been advocated (Biederman et al. 1982; Loftus and Mackworth 

1978) that the gist (or essential meaning) of a scene can be extracted very early, sometimes 

from a single brief exposure, corresponding to the first couple of fixations. There also 

evidence that our eyes are quickly drawn to informative regions of the scene (Antes 1974; 

Mackworth and Morandi 1967). “Higher” cortical processes (like memory) are 

increasingly involved in recognition tasks with increasing number of fixations 

(Christianson et al. 1991; Loftus 1972) and there is evidence that cognitive processing 

activities are suspended during a saccade, although this has not been proved for scene 

perception (Rayner 1998). To safely ignore any possible effect of saccadic suppression we 

decided to restrict saccades to the minimum that would allow our task to be performed. 

These restrictions were spatial, by using relatively small images (2.57º of subtended visual 
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angle) and temporal, by presenting the stimuli for a short period of time (500 msec). 

However, the presentation time was long enough for the stimuli to be considered static 

(Braddick 1973). 

2.2. Methods 

2.2.1. Visual stimulus creation 

In the first experiment, human observers were required to discriminate between pictures 

of slightly different faces or objects. This was done by producing two sequences from 

monochrome digitised pictures (128x128 pixels, 256 grey levels), each consisting of 41 

pictures of similar size and grey level depth. In the first sequence, two faces (one of a man 

and one of a woman) were slowly blended (or morphed) together producing a series of 

plausible intermediate pictures of slightly different faces13 (Benson 1994; Tolhurst et al. 

1998). The term “morphing” refers to the creation of a series of intermediate images 

between a start image and an end image. The simplest way of morphing is called “cross-

fading” which is the direct transformation of each pixel of the start image into the 

corresponding pixel of the end image. During the production of more complex morph 

sequences, one can direct the spatial transition by linking particular areas of each image 

with “key points” or “key lines” and by accelerating or delaying the transformation of 

specified areas. Figure 2.3 shows an example of such “key lines” and “key points”. 

In the first sequence (created by Dr Phil Benson and called “man-to-woman” here), the 

shape, contrast and texture vary 2.5% from each picture to the next. The second 

sequence, (created by the author of this work and shown in Figure 2.4(a)) consists of a 

morph between an animal (bull) and an object (Morris Minor car). To avoid distortions 
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generated by the morphing algorithm, the background was digitally removed from both 

initial pictures. An effort was made to match the salient features of the front of the car 

(lamps, radiator, the sides of the windscreen, etc.) to the salient features of the bull’s face 

(eyes, nose, horns, etc.). Some implausible objects that were not recognisable either as 

animate or inanimate were produced for mixtures near 50% car and 50% bull. This 

sequence is thereafter called “car-to-bull”. 

 

Figure 2.3: Example of the morphing technique: the morphing 
sequence is produced by determining "key points" and if necessary, 
joining them with "key lines" in the start Image. These will move to 
specific areas in the end Image. It is necessary to adjust the 
corresponding key points/lines in the End Image by dragging the 
point to the appropriate position. 

Given the greater difference between both original images, observers were able to 

discriminate between much smaller percentages of change than in the man-to-woman 

sequence, and so smaller (0.5%) morph steps were created. This is one of the key 

differences between both morph sequences: spatial changes between the car and the bull 

                                                                                                                        
13 The man-to-woman morph sequence was kindly supplied by Dr Phil Benson. 
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images are larger and more salient than between the two human faces, therefore the 

minimum morph step was adjusted to represent this. 

 

Figure 2.4: Examples of pictures from two of the four morph 
sequences used in our psychophysical experiments. (a) Original car-
to-bull morph sequence in which all pictures have approximately 
natural statistics. The bull-to-car sequence runs from right to left. (b) 
Same pictures processed to decrease (‘whiten’) the slopes of the 
amplitude spectra. (C) Same for an increase (‘blur’) of the slopes. 
Slope offset (∆α) for each sequence is shown on the left. 

“Higher” cortical processes (memory, face features integration (Thompson 1980), etc.) 

mediate object discrimination tasks such as the one proposed here (Wandell 1995). The 

middle parts of our morph sequences (near 50% morph change) contain some objects 

that, although not implausible, are certainly “unfamiliar” to the observer. To reduce the 

role of higher cortical processing and keep our morph discrimination closer to the 

ecologically-relevant task of local contrast discrimination, we decided to use the images 

near the reference pictures of both morph sequences. This means that our subjects were 
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asked to discriminate, for example, between a “familiar” bull and a slightly fatter version 

of the same bull and not between a “monster” (see middle picture in Figure 2.3) and a 

slightly different “monster”. 

We believe the image components of the morph sequences used in this research are 

representative of natural world in general. Their amplitude spectra slope is between the 

range reported by several other workers (Field 1987; Párraga et al. 1998a; Tolhurst et al. 

1992) and their phase statistics were not randomised or altered in a way that would make 

them statistically different from the original pictures. 

Since each sequence can be used in two ways (either the first or the last picture can be the 

reference picture), in practice we used four different sequences in our experiments. They 

were: “car-to-bull”, “bull-to-car”, “man-to-woman” and “woman-to-man”. 

The digital modifications of the original car-to-bull pictures and morphs were done using 

commercial algorithms (Paint Shop Pro v5.0 from JascSoftware and Morph Artist v1.0 

from Gryphon) in a PC running under Windows 95 operating system. 

From both initial morph sequences, further sets were made where the spectral slopes of 

the component pictures were increased or decreased from the natural value. This was 

made by taking the Fourier transform of each image, removing the DC (mean amplitude) 

and multiplying its amplitude spectrum by a filter of the form: 

α∆−∝ ffWeight )(  

where f is spatial frequency and ∆α determines the increase or decrease in the slope of the 

amplitude spectrum. Negative values of ∆α make the slope of the amplitude spectrum 

shallower (whitened pictures), therefore transforming the picture as shown in Figure 
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2.4(b) and positive values make the slope steeper (blurry14 pictures) as in Figure 2.4(C). 

The new images were constructed by inverse-Fourier transformation. After the inverse-

Fourier transformation, some pixel values become larger than the available range (0-255 

greylevels) and had to be scaled to fit within the display limit (127 grey levels on each side 

of the mean display luminance). This was especially true for large negative values of ∆α (-

0.8 and -1.2). This operation (the scaling of the signal to fit the available dynamic range of 

the digital image) determines the “pivot point” in the rotation of the Fourier amplitude 

slope plot (see Figure 2.2). 

For example, an extremely “whitened” picture would contain much more energy near 

sharp edges between objects than in any other areas. This would compress the range of 

greylevels used by most of the image (and thus, decrease the contrast) and produce bright 

pixels near salient borders. The effect of these contrast variations on our results will be 

analysed below. Given that normalising (adjusting the dynamic range of the image to fit 

that of the display) each component image of the morph sequence would produce 

variations in contrast within the same morph sequence, we used one normalisation factor 

for each of the sequences of images at any given spectral slope. Different normalisation 

factors were used for sequences with different values of ∆α. To avoid edge effects in the 

Fourier transform and in our morph discrimination experiment, the square edges of each 

picture were smoothed with a Gaussian roll off mask (SD= 15 pixels). All manipulations 

were made using a purpose-written algorithm in Turbo Pascal under DOS operating 

system. 

 
14 Although this transformation makes the pictures look “blurred”, it is not technically a blurring operation 

since the energy present in the low-SF side of the spectrum is increased. 
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2.2.2. Experiments 

The pictures were presented on a 19’ Sony Trinitron monitor driven by a Cambridge 

Research Systems VSG 2/4 Graphics Card. The screen area was 1024 x 768 pixels. The 

frame rate was 80 Hz. 

The display was calibrated to compensate for luminance non-linearities. This is necessary 

because in CRT displays, such as the one used in this experiment, the transfer function is 

non-linear, (i.e. the luminance measured on the screen is not linearly related to the driving 

voltage). The characteristic transfer function for CRTs has the form: 

γ)( 0VVkL −=  

Equation 2.1 

Where L is luminance, V is the applied voltage; V0 is the brightness level and γ is about 

2.5 for CRT monitors. The process of compensating for these display non-linearities (also 

called “gamma correction”) consists of making a series of measurements across the full 

luminance range and fitting a function using a standard minimization technique. An 

inverse transfer function is then derived and applied to compensate for the non-linearities 

(Carpenter and Robson 1999; Travis 1991b). 

Each picture was resized (multiplied by 2) to measure 9 x 9 cm when presented on the 

centre of the display and subtended 2.57º square to the eyes of an observer situated 2 m 

away. This ensured that the whole picture was within foveal range (diameter of the fovea 

= 5.2° (Wandell 1995)). Each of the original picture’s pixels subtended an angle of 1.2 arc 

min. The range of SFs involved in this discrimination task could be estimated from the 

geometry of the experimental set up (between 0.38 and 24 cycles·deg-1, which is within the 

visible range, although higher spatial frequencies were present at oblique orientations). 
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The part of the screen that was not occupied by the stimulus had a fixed luminance of 85 

cd/m2, the midpoint of the luminance range of the pictures. The whole monitor 

subtended 10.28 x 7.43º to the observer. 

 

Figure 2.5: Scheme of the experimental protocol. The computer 
algorithm choses randomly between two alternatives (names as 

Alternative 1 and Alternative 2). In Alternative 1, the test image is the 
last one to be presented and in Alternative 2 is the first. The second 

picture presented is always a reference image. The bottom of the 
figure shows the timing of the events, which include the production 

of different sounds to tell the observer whether the answer was 
correct, etc.  

A modified two-alternative forced choice (2AFC) paradigm (Tadmor and Tolhurst 1994) 

was used to measure the observer’s thresholds for discriminating among the morphed 

pictures in the sequence as follows. One of the original (non-morphed) pictures was 

presented on every trial and was called the reference. Three pictures were presented 

sequentially. Each one was presented for 500 msec with intervals of 200 msec between 

them (to reduce the number of saccades and prevent masking). The second presentation 

always contained a copy of the reference; one of the other two presentations (chosen 

randomly by the computer) also contained an identical copy of the reference, while the 

remaining presentation contained a morphed picture (called the test picture). The observer 

had to press the left/right mouse buttons to tell the controlling computer if the morphed 
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picture was the first/last one. Auditory feedback was given to the observer to tell her 

whether the choice was correct. The discrimination task was made harder or easier using a 

conventional staircase technique, in order to find how much morphing was required to 

just allow discrimination. If the observer correctly identified the presentation containing 

the morphed picture five times, then a new morphed picture was chosen that should 

make the discrimination task harder. If the observer made one or more errors in a 

sequence of five trials, then a potentially easier morphed picture was chosen for the 

subsequent trials. This continued until 2-3 reversals occurred (normally after about 180 - 

200 responses). Two independent staircases were run for each slope. One of the staircases 

starts with an “easy” pair of pictures and becomes gradually more “difficult”. The other 

starts with a “difficult” pair and goes in the opposite direction. Eventually the staircases 

meet at the threshold point. A third mouse button allowed observers to repeat the last 

trial, but they were instructed to use this only in exceptional cases. A complete experiment 

included seven morph sequences: the original sequence (∆α = 0) and six spectral-slope 

modified sequences (∆α = -1.2, -0.8, -0.4, 0.4, 0.8, 1.2). Stimuli from the seven sets were 

interleaved randomly. 

Observers sat in a darkened room and looked at the pictures binocularly (they were 

allowed to fixate freely and to take breaks to avoid tiredness). Free fixation was required 

to allow observers perform the task, since it involved searching for regions of the scene 

where local changes in contrast have occurred. The presentation time allowed 

approximately two fixations to be done in each presentation (the mean fixation duration 

for a typical visual search task is about 275 msec (Rayner 1998)). A typical experiment 

(consisting of 7 experimental series, each corresponding to a different Fourier amplitude 

slope and involving about 180-200 trials) was divided into two sessions that lasted about 

45 minutes each. The controlling computer was a 300Mhz Pentium II PC running under 
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Windows 95 in DOS mode. Both the algorithm running the experiment and the one used 

to analyse the results were adapted from custom algorithms originally written by Dr D.J. 

Tolhurst in Pascal programming language. 

2.2.3. Data analysis 

The results from each single experimental series were plotted as psychometric functions 

and fitted with the integral of a normal distribution, which was constrained to fall within 

the range 50% (the guess rate in a 2AFC) to 98% (allowing for a 2% “finger error”). 

“Finger errors” or “observer lapses” are mistakes committed in repetitive tasks by 

observers who want to press one button and accidentally press another (see Appendix A 

for a more complete discussion on the effects of these errors). The slope (β) and position 

(ε ) of the best-fitting cumulative normal were sought with a SIMPLEX routine, which 

maximised log-likelihood (Press et al. 1986). The χ2 values of the fits, estimated as –2·log 

(likelihood ratio) were usually lower than the number of degrees of freedom, indicating an 

acceptable goodness of fit. Threshold was considered to be the magnitude of ε  that 

would allow the observer to correctly identify the interval containing the morphed 

stimulus on 74% of trials. It was possible to estimate the standard error (SE) of the 

measured threshold as: 

2

2 )ˆ,ˆ(1
ε

βε
∂

∂
−=

LSE  

Equation 2.2 

where  is the log-likelihood function calculated for )ˆ,ˆ( βεL ε̂  and , the values of the 

two parameters which produced the best fit (Edwards 1972). In fact, simulation of such 

staircases shows that the distribution of 

β̂

ε̂  is slightly skewed, so that Equation 2.2 slightly 
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underestimates15 the standard error (see Appendix A for an analysis on how the errors 

were obtained). 

Once the psychometric functions were fitted and the errors calculated, a diagram showing 

the dependence of the discrimination threshold (measured as a percentage of the morph 

sequence where 0% was the reference and 100% was the other extreme of the morph) 

with the slope offset (∆α) was produced. 

2.3. Results 

The experiments were performed on two observers (TT and CAP) who were 

psychophysically experienced and knew about the details of the experiment but the main 

results were replicated on a naïve observer (IG) who was psychophysically experienced 

but did not know about the details of the experiment at the time. TT and CAP were 

presented with four types of reference stimulus: pictures of a bull, a car, a man’s face and a 

woman’s face. The bull and the car formed one sequence (called bull-to-car), the man’s 

face and the woman’s face another (called man-to-woman). IG was presented only with 

the man-to-woman sequence. The observer had to identify test pictures that were 

different from the reference in the direction of the other end of the morph series. Thus, 

the car will become slightly more like the bull, the bull more like the car, the man’s face 

like the woman’s face and vice versa.  

Figure 2.6 and Figure 2.7 show the results obtained for observers TT and CAP. The 

discrimination thresholds in both figures are expressed as a percentage movement 

through the morph series. The plotted points show the discrimination thresholds and the 

error bars show the standard errors. The abscissas show the deviation from the “normal” 

 
15 D.J. Tolhurst and M. Chirimuuta, personal communication. 
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value of α, the spectral slope (as discussed in Section 2.2.1). A positive amplitude slope 

offset value (∆α) means that the slope was steeper from the normal (the scene was 

“blurred” -Figure 2.2a) and a negative value means that the slope was shallower (the scene 

was “whitened” - Figure 2.2b). Zero offset means that the picture had “natural” second-

order statistics. 

We predict that, if natural scenes are optimally encoded, the thresholds at zero amplitude 

slope offset will be lower than at the other values. As we can see from the figures, the 

eight experimental sets do show thresholds that are generally lower between amplitude 

slope offsets (∆α) of – 0.4 and +0.4. The thresholds rise more or less symmetrically from 

this lowest point. 

The numbers on the ordinate axis differ, reflecting the differences between the morph 

scenes. For example, thresholds for the man-to-woman and woman-to-man series 

normally range from 10% to 30% whereas thresholds for the bull-to-car are lower (1% to 

5%). This reflects the fact that the car and bull pictures were more dissimilar to each other 

than the man and woman pictures. Thus, the car-to-bull sequence had to be formed of 

pictures differing by a smaller percentage from the next than those forming the man-to-

woman sequence. There are other justifications for the differences in discrimination 

thresholds obtained using one sequence or the other. One possible reason is that the car-

to-bull sequence was produced by a commercially available software package whereas 

man-to-woman was produced using a custom-written algorithm. The other possible 

reason has to do with man-to-woman consisting of human faces, which might be encoded 

differently by the HVS. 
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Figure 2.6: Experimental results obtained for observer TT. The plots 
show the discrimination thresholds for all four morph sequences 
versus the deviation (∆α) from the natural value of α. Threshold is 
expressed as a percentage change through the morph continuum (0% 
represents one original picture and 100% represents the other). 
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Figure 2.7: Experimental results obtained for observer CAP. Axes are 
similar to those for observer TT. 
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Figure 2.8 shows similar results for observer IG, who was naïve about the experimental 

hypothesis but was an experienced psychophysical observer. 

 

Figure 2.8: Experimental results for observer IG (psychophysically 
experienced but naïve about this particular experiment). Axis are 
similar as the above. 

To show more formally that thresholds are lowest near zero amplitude offsets, we fitted 

two linear equations to each dataset and looked at where they intersected. The mean 

intersection point for pairs of lines was at slope offset (∆α) of –0.071 (n= 10, SD= 0.425). 

We also fitted second-order polynomials (Figure 2.9 and Figure 2.10). The mean slope 

offset to the minima of the fitted polynomials was ∆α = -0.016 (n = 10, SD=0.165). 
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Figure 2.9: Polynomial fittings to results for observer TT. 
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Figure 2.10: Polynomial fittings to results for observer CAP. 

Table 2 shows the mean slope offset of the minima for all polynomials and χ2 for all 

observers and conditions. The χ2 of these fits were compared to the χ2 resulting from the 
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fitting of a pair of lines. Our results show that the average χ2 for the pair of lines was 8 

times higher than the average χ2 for the polynomials. A more complete statistical analysis 

of these results and others is included in the next chapter (Section 3.4.2). 

Condition Subject Minimum ∆α χ2 

    

Man-to-woman IG -0.136 2.727 

Woman-to-man IG 0.106 6.292 

Bull-to-car CAP 0.002 12.826 

Car-to-bull CAP -0.282 34.096 

Man-to-woman CAP 0.173 18.811 

Woman-to-man CAP 0.204 10.342 

Bull-to-car TT -0.096 15.157 

Car-to-bull TT -0.044 24.354 

Man-to-woman TT -0.204 5.145 

Woman-to-man TT 0.116 5.768 

Table 2: Mean slope offset of the minima and calculated χ2 for all 
observers and conditions. 

2.4. Discussion 

It is noticeable in Figure 2.2 that the change in the slopes of the amplitude spectra also 

changes the apparent contrast of the pictures, thus it is possible that our results 

(optimisation of performance for discriminating morphed images with natural slope) are a 

trivial result of differences in contrast. To rule out this possibility we performed a control 

experiment in which we reduced the contrast of the original pictures without any change 

in the amplitude slope and investigated the effects on the observer’s performance for 

doing the same discrimination task. 

In this new experiment, observers had to reduce the contrast of a picture with zero offset 

(∆α= 0 or natural statistics) until it appeared to match the contrast of the pictures with 
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other slope offsets (∆α≠ 0). For example, in a single trial tha observer is presented with 

two pictures on the screen, one is the original, unmodified image of the woman’s face and 

the other is a Fourier-modified versions of it (∆α≠ 0). The subject has then to press the 

mouse’s buttons to change the contrast of the second image so that it matches the 

contrast of the first. All other conditions were the same as in the normal morph 

discrimination threshold measurements. The contrast corresponding to the original, 

unmodified image (∆α= 0) was considered equal to 1 and all reductions were measured as 

a fraction of this. The results (see Figure 2.11a) show that the (relative) subjective contrast 

of pictures of the woman’s face is greater for the natural slope than for either steeper or 

shallower slopes. From the same figure we can see that the contrast of the zero offset 

picture had to be reduced more to match the more “blurred” or “whitened” pictures. 

Figure 2.11b shows the normalised root mean square (RMS) amplitude of the same 

pictures. RMS is related to the total area under the Fourier power spectra by Rayleigh’s 

theorem: 

∫ ∫= 22 )()( fGxg  

Equation 2.3 

This translates into Parseval’s theorem for discrete functions: 

∑ ∑==
N N

fGxg
N

RMS 22 )()(1  

Equation 2.4 

In the previous equations, G(f) is the Fourier transform of the function g(x). RMS values 

were normalised so that unity represents the contrast of the image without any 
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modification ((∆α= 0 or natural statistics) and other contrasts are indicated as a fraction 

of this. From Figure 2.11 (a and b) we can see that subjective contrast (a) is not closely 

related to physical power (Troscianko et al. 2000a, b) (b). Both figures are plotted on the 

same scale. 

 

Figure 2.11: Contrast variations across images. (a)The subjects had to 
reduce the contrast of the “natural” picture of the woman’s face to 
match the “blurred” and “whitened” ones. (b) Normalised RMS of 
the same pictures. 

The reporting of a higher relative contrast by observers is consistent with claims made by 

other workers. For example, Brady and Field (Brady and Field 1995; Field 1987) proposed 

that natural statistics (1/f power spectra) might allow the visual system to optimally 

encode the spatial structure of natural scenes, because the responses of cortical cells are 

the same regardless of the spatial scale (limited dynamic range). This even response across 
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different spatial scales (i.e. an optimised distribution of neural activity) corresponds to 

focused natural images. In their view: “…an image which is ''in focus'' will have structure (e.g., 

edges) which has roughly the same magnitude across scale. That is, the loss of high frequency energy in some 

images is due to the reduction of the number of regions that contain structure rather than the amplitude of 

that structure. An ''in focus'' image will have structure (e.g., edges) across scale that have roughly equal 

magnitude but may vary in the area covered by structure” (Field and Brady 1997, page 3367). 

Differences in “perceived blur” as judged by human observers were related to measures of 

image structure (the ''rectified contrast spectrum'' or ''RCS'') (Field and Brady 1997). 

The effects of reducing the contrast of the original pictures without any change in the 

amplitude spectra were investigated by measuring thresholds for discriminating between 

morphed pictures (with ∆α = 0) at a variety of contrast attenuations in a control 

experiment. In this new experiment, one of the previous discrimination threshold 

measurements (woman-to-man series (∆α =0)) was repeated at increasingly lower contrast 

levels. At first, all conditions, including contrast, were similar as before, but later the 

experiment was repeated (same sequence without any changes in the Fourier spectrum) at 

contrasts values of 56%, 32% and 20% (for observer CAP) and 51%, 21% and 15% (for 

observer TT) relative to the original sequence. Figure 2.12 shows the discrimination 

thresholds for two observers (TT and CAP) as a function of the sequence’s relative 

contrast. Here, a relative image contrast of 1 means that the image contrast remains the 

same and a relative contrast of 0.5 means a 50% contrast reduction. From the figure, it is 

possible to see that a modest contrast reduction does not affect the discrimination task. 

The thresholds rise slightly when the contrast of the morph sequence is attenuated by 

75% or more (0.25% relative image contrast in Figure 2.12). This is equivalent to the 
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subjective contrast of a much “whitened” (∆α= -1.20) or “blurred” (∆α= 1.20) image as 

seen in Figure 2.11a. 

The results of the control experiment suggest that the optimisation of the performance 

for discriminating morphed images with a natural spectral slope is not an artifact caused 

by differences in contrast. 

 

Figure 2.12: Contrast attenuation. Experimental results for two 
observers who measured their discrimination thresholds at a variety 
of contrast attenuations (woman-to man series). 

One reason why we changed the second-order statistics (or power spectra) to make our 

images unnatural is that this was especially straightforward. There is however, a more 

important reason: many natural scenes have been found to have similar spectral slopes 

(Burton and Moorhead 1987; Field 1987; Tolhurst et al. 1992), thus one can imagine this 

to be a driving force in the shaping of the properties of the HVS. 

Other manipulations would make an image unnatural, as for example, changes in the 

phase spectra. Phase spectra are said (Piotrowski and Campbell 1982) to be more crucial 

to the appearance of pictures than the power spectra, since it reflects third-order (or 
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higher) image statistics (Thomson and Foster 1997). According to this view, a 

manipulation of the third-order statistics might make our morph sequences even harder to 

distinguish than the changes in the power spectra reported here. However, Tadmor and 

Tolhurst (Tadmor and Tolhurst 1993) have pointed out that the global amplitude 

spectrum is also essential for specifying the particular content of natural images (see 

Section 1.8.5). Our results also support this view, given that changes in the amplitude 

spectra of natural scenes increased the difficulty in performing our morph discrimination 

task. This does not contradict the evidence (Piotrowski and Campbell 1982) showing that 

changes in the phase spectra produce more dramatic effects on the appearance of natural 

scenes than changes in the amplitude spectra. There is a case for saying that both, the 

amplitude and the phase spectrum may be important for reliable specification of such 

images. 

2.5. Conclusions 

a) We argue that morph discrimination as a visual task is both evolutionary 

relevant and relatively easy to control by incremental steps. 

b) Our results for this task show that the HVS performs optimally when the 

second-order statistics of the images are natural. This optimisation is shown 

in the form of morph discrimination functions that are U-shaped and can 

be fitted by a second order polynomial, which has a minimum value 

corresponding to images with “natural” second-order statistics. 

c) The fact that observers report a higher subjective contrast for the natural 

images than for the ones with unnatural slopes, is consistent with the 

proposal that the amplitude spectra of natural scenes might be most 
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appropriately sampled by neurons with natural bandwidths (Brady 1997; 

Brady and Field 1995; Burton and Moorhead 1987; Field 1987; Field and 

Brady 1997). 



 

Chapter 3.  
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C h a p t e r  3  

THE PROPERTIES OF SPATIAL INFORMATION IN NATURAL 
IMAGES AND SPATIAL PROCESSING IN PERIPHERAL VISION 

Peripheral spatial vision: discriminating small changes in natural images 

3.1. Overview 

The majority of the research on the HVS is dedicated to the central 1% of the visual field. 

This is understandable since central vision is extremely important for everyday life, but it 

means that the characteristics of peripheral vision and its mechanisms are poorly 

understood in comparison with central vision. 

In general terms, the HVS is far more deficient when processing information in its 

periphery than it is in its central part and this deficiency increases with eccentricity. Early 

work (Aubert and Förster 1857; Wertheim 1894) established that visual acuity falls 

inversely with eccentricity of target location from the centre of the visual field, and that 

iso-acuity contours (contours of similar two-point resolution), are horizontally-elongated 

ovals displaced by increasing amounts into the temporal visual field with increasing 

eccentricity. The conceptual framework for relating these topological features of visual 

resolution to the anatomy and physiology of the retina was developed by Helmholtz (Von 

Helmholtz 1911). 

The fact that the size of the receptive fields tends to increase with the distance from the 

fovea was noted by Hubel and Weisel (Hubel and Wiesel 1960, 1974). They suggested that 
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‘differences between central and peripheral visual acuity in man may well be related to variations in 

receptive-field central size’. Contrast sensitivity measures (Kelly 1984; Robson and Graham 

1981; Rovamo and Virsu 1979; Rovamo et al. 1978), show that our sensitivity to high-SFs 

also decreases with increasing retinal eccentricity but a re-scaling approach was proposed 

to compensate for this. Under this point of view, if the size of targets is expressed in 

terms of the cortical dimensions (or amount of cortical representation corresponding to the 

retinal space) rather than visual space dimensions, visual performance is invariant across 

the visual field. In practice, visual targets were magnified in the periphery in order to 

compensate for the reduced size of the receptive fields. The argument for re-scaling is 

based on both the increasing size of the receptive fields (Rovamo and Virsu 1979) and the 

decreasing amount of cortical processing devoted to the visual field (Brindley and Lewin 

1968; Daniel and Whitteridge 1961; Van Essen et al. 1984) with increasing eccentricity. 

This approach has been relatively successful (Rovamo and Virsu 1979; Rovamo et al. 1978; 

Virsu et al. 1987; Virsu and Rovamo 1979); especially because it is possible to produce 

similar contrast sensitivity functions at any part of the visual field, providing that the 

stimulus is re-scaled (see Figure 3.1). 

Several studies revealed that there might be a wide choice of threshold gradients, many of 

which are substantially steeper or flatter than the proposed inverse cortical magnification 

(Klein and Levi 1987; Pointer 1986). For example, gradients for grating acuity (Klein and 

Levi 1987) are steeper than for unreferenced motion tasks (Levi et al. 1984) and flatter 

than for letter acuity (Virsu et al. 1987), vernier acuity (Levi et al. 1985) or relative motion 

tasks (Levi et al. 1984). In general, when tasks require local analysis, performance in the 

periphery is worse than when the task require some global analysis. 
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Figure 3.1: Part a: variation of the CSF with eccentricity. Part b: same 
measures with the test stimuli scaled in size and spatial frequency to 
compensate for the cortical area devoted to processing. Curves 
correspond to 0, 1.5, 4, 7.5, 14 and 30 deg. From Rovamo et al, 1978 
(Rovamo et al. 1978). 

The large variance between observers’ performance, the variations across tasks and the 

general agreement about the decrease of neural representation with eccentricity in the 

periphery, does not make it possible to attribute the decline in performance to any simple 

anatomical structure (Wandell 1995). Tolhurst and Ling (Tolhurst and Ling 1988) suggest 

that ‘there may indeed be more than one useful scaling procedure, each reflecting a different mode of visual 

processing and a different aspect of the organisation of the visual system’. 

3.1.1. What the morph discrimination experiment may tell us about peripheral 

vision? 

In the previous chapter, we argued that the human visual system is optimised to encode 

the second-order statistics of the visual environment. We measured the human 

discrimination thresholds for small spatial changes in stimuli with natural and unnatural 

Fourier statistics, using a 'morphing' technique, assuming that the subject can direct 

his/her gaze at the region of interest so as to project this into the fovea. We know that 

peripheral vision differs from foveal vision in the representation of spatial information, 
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but it is less clear how this would affect our ability to perform naturalistic tasks (such as 

the one considered in our experiment). We believe that repeating the same morph 

experiments for peripheral vision may improve our understanding of the visual processing 

occurring in the periphery. For example, if peripheral vision is optimised to encode the 

second-order statistics, as is the case of foveal vision, the minima of the U-shaped 

discrimination function should coincide with natural stimuli. If we assume that the human 

CSF is the envelope of a certain number of SF-channels, and these “signal” to the brain 

when they detect a change in the morph sequence, then “blurring” or “whitening” the 

signal may reduce the number of signalling channels. For example, a flat discrimination 

threshold vs. ∆α plot (as opposed as the “U-shaped” ones found in the previous chapter) 

may indicate that those channels that are involved in the discrimination task remain 

unaffected by changes in the distribution of energy. Since the “blurring” and whitening 

were extreme, this is unlikely. However, if the number of SF-channels involved in the task 

decreases, one might expect that changes in the distribution of Fourier energy may upset 

the response of the system in a greater manner, thus provoking larger discrimination 

thresholds (and less flat “U-shapes”). In summary, a measure of the flatness (or “tuning”) 

of the discrimination threshold vs. ∆α function may relate to the number of SF-channels 

involved in the task (a broad tuning indicate more channels and fine tuning indicates less 

channels). If the same number of SF-channels is active, then the U-shape of the 

discrimination function should remain the same. 

Regarding the absolute values of the discrimination thresholds, we expect that, since 

observers’ performance on the previous experiment is based on local discrimination of 

contrast variations in the images, thresholds should be increase faster with eccentricity 

than thresholds for normal CSF measures (which requires no local analysis). We expect this 
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decrease on observers’ performance across eccentricity to be closer to that experienced 

for vernier acuity tasks (Levi et al. 1985; Westheimer 1982). 

The effect of stimulus re-scaling in the periphery for naturalistic tasks is also not very 

clear. Rovamo et al (Rovamo et al. 1997) investigated the effects of scaling on observers’ 

abilities to perceive small amounts of geometric change in human faces in peripheral 

vision. They claim that performance could be made equal across the visual field using the 

appropriate enlargement. In their experiments, a decrease in performance at 1.73-2.45° of 

eccentricity could be compensated by a magnification of twice the foveal size of the 

stimuli. This agrees with previously measured values for vernier acuity, orientation 

discrimination, etc. 

Melmoth et al (Melmoth et al. 2000) investigated the effects of contrast and size scaling on 

face perception in foveal and peripheral vision. They claim that failures of spatial scaling 

may simply reflect the need to compensate for task-specific reductions of efficiency (i.e. 

reduction of the signal-to-noise ratio) which can be done by increasing the stimulus 

contrast. Other authors (Thorpe et al. 2001) have investigated the performance for the 

detection of animals in natural images using far peripheral vision. They reported linear 

decreases in accuracy with eccentricity up to about 70.5°, where detection was still 

possible (60.5% correct answers). They have shown that even high-level visual tasks can 

be performed using the poor spatial information provided by the peripheral retina. 

 The compensatory effects of re-scaling are linked with “simple” cortical processes and 

anatomical structure. Obtaining the same discrimination thresholds for foveal stimuli and 

M-scaled peripherally-viewed stimuli may indicate a correlation between this task and the 

anatomical structure of the cortex. 
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For these reasons, we decided to extend our study to peripheral viewing. 

3.2. Methods 

We treated this set of experiments as an extension of the ones in the previous chapter. 

Subjects were recruited and trained to fixate so that the targets were peripheral to those in 

the previous chapter. All conditions were similar unless stated otherwise. Observers’ 

acuity was tested using a letter chart to confirm that it fell within the normal range. Their 

“better” eye was selected as being the eye that they normally used for pointing, shooting 

or looking through a telescope, for example. 

3.2.1. Visual stimuli and experiments 

The same sequences of visual stimuli as described in section 2.2.1 were used. These were 

car-to-bull (cb), bull-to-car (bc), man-to-woman (mw) and woman-to-man (wm) with the 

same values of ∆α. Τhey were displayed in a similar fashion; using the same equipment 

and the same blurring mask to avoid edge-interference. 

A morph sequence of natural scenes was presented to observers in modified 2AFC 

experiments. They were asked to discriminate between reference (original) images and a 

slightly morphed version of these. Observers were asked to fixate either freely (for foveal 

viewing) or upon a red light-emitting diode (LED) at 3 or 6 deg along the horizontal axis 

to the side of the screen. Images were viewed on the temporal visual hemi-field (i.e. retinal 

images were projected on the nasal hemi-field) in all cases. Discrimination thresholds were 

obtained in the same way as before. The statistics of each morph sequence were 

manipulated by controlling the falloff of Fourier amplitude with SF (α), and thresholds 
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for morph sequences with different α values were measured. In this case there were four 

different experiments depending on the eccentricity and size of the target:  

a) Experiment 1: viewing distance: 2 m. Eccentricity: 0 deg (i.e. foveal viewing). 

Target size: 9 x 9 cm (i.e. it subtended about 2.6 deg square), monocular 

viewing. Number of subjects: 5. 

b) Experiment 2: similar to experiment 1 except that subjects were instructed to 

fixate on a target that was 3º off-centre to the temporal side of the visual 

field (eccentricity: 3º. Temporal). Number of subjects: 5. 

c) Experiment 3: similar to experiment 2 except that subjects were instructed to 

fixate on a target that was 6º off-centre (eccentricity: 6º. Temporal). 

Number of subjects: 5. 

d) Experiment 4: similar to experiment 1 except that subjects were asked to 

fixate freely and pictures were reduced in size by a factor of 0.369 (target 

size: 3.3 x 3.3 cm). Number of subjects: 2 (see below for a justification of 

the scaling factor). 

e) CSF measurement: this was done using the same methods as in the other 

experiments. Vertical sinusoidal luminance gratings were presented instead 

of pictures. The “reference” picture in this case was a blank (midgrey) mask 

and the observer was instructed to press the button indicating in which of 

the two intervals the visible grating was. The contrast of the visible grating 

was thus reduced/increased (following two interleaved staircases) until the 

threshold was reached. Psychometric functions were fitted. A similar 

Gaussian roll-off was applied to minimise edge effects in all experiments. 
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The CSF measurements were repeated for foveal, 3°, 6° and foveal-small 

conditions. 

In all cases, the stimuli were viewed monocularly so that the temporal retina could be 

assessed independently of the nasal retina. We ensured that in all cases, no part of the 

stimuli reached near the 10º-15° eccentricity area, due to interference of the blind spot. 

A phenomenon was observed in 1804 by Troxler (Troxler 1804) who noticed that objects 

in peripheral vision tended to fade in visibility if a steady gaze was held. This is a property 

of a system which codes dynamic events for the sake of efficiency. The more eccentric the 

object in peripheral vision, the quicker it fades when fixation is constant. This effect is not 

noticeable in foveal vision due to regular small eye movements, which stimulate new 

retinal cells and prevent fading of the object (Carpenter 1988). Observers were therefore 

encouraged to occasionally stop between trials and move their eyes around the fixation 

point to reduce the ‘Troxler effect’. After the experiment, psychometric data was screened 

for the presence of “secondary peaks” which may represent “glimpses” of the peripherally 

viewed image. Experiments were repeated in such (unusual) cases. 

To avoid the effects of ‘binocular rivalry’ subjects were instructed to take breaks when 

needed and to press the mouse’s middle button to repeat a trial when rivalry had occurred. 

Binocular rivalry is a product of monocular viewing, which entails the input from the 

covered eye becoming temporarily more dominant than the uncovered eye. The frequency 

of this phenomenon increases as the uncovered eye becomes tired. 

As before, both the algorithm running the experiment and the algorithm used to analyse 

the results were adapted from custom algorithms originally written by Dr D.J. Tolhurst in 

Pascal programming language. 
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3.2.2. Cortical magnification factor and M-factor 

The original aim of experiment 4 was to compare the results obtained for central (foveal) 

vision with those of peripheral vision using a compensatory magnification factor. 

Preliminary results showed that, when the peripheral image was magnified, subjects were 

often concentrating on changes occurring near the edge of the picture that was closer to 

the central part of the visual field. To avoid these artifacts and to encourage subjects to 

pay attention to changes occurring in the whole picture instead of its borders, we decided 

to compare the results obtained for 6 º peripheral viewing (see experiment 3) with those 

obtained for central viewing of images reduced by a similar factor instead (see experiment 

4). 

The M-factor values were calculated from to the following equation: 

fovMEEM 13 )000012.029.01( −++=  

Equation 3.1 

where M is the cortical magnification factor (in mm/deg) and E is visual eccentricity (in 

degrees). It was made in agreement to values of ganglion cell density (D) (Rovamo and 

Virsu 1979; Rovamo et al. 1978). Estimations of cortical representation of the fovea (Mfov) 

by the same authors give a value of 7.99 mm/deg (Rovamo and Virsu 1979). The cortical 

representation at 6º (M6deg) eccentricity (according to Equation 3.1) is 2.91 mm/deg. The 

scaling factor for the 6º eccentric retinal position used in this study was calculated by 

dividing the foveal value of M (Mfov) by the eccentric value (M6deg). 

7.2==
6degM

M
C fov  

Equation 3.2 
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This number represents the ratio of cortical projections between to the two retinal areas 

(corresponding to the fovea and 6°). Since there is not a general agreement, the values of 

M obtained here may not coincide with those used by other workers (see Drasdo (Drasdo 

1991) for a comprehensive review of the literature). Even if the average value of M in 

humans can be established with reasonable precision, it could at best coincide with only 

one of the diverse values that have been reported for different visual tasks (see discussion 

at the end of the chapter). There have been reports (Rovamo et al. 1997) of an equivalent 

decrease in performance in tasks such as detection of geometric image distortions on 

facial features, vernier acuity, orientation discrimination and curvature detection and 

discrimination. In the present study, we decided to use Rovamo and Virsu’s measures 

because of the physical limitations of the screen and graphics card resolution. 

 

Figure 3.2: Relative sizes of the images present in experiments 3 
(picture of the car on the right) and 4 (smaller version of the same 
picture, on the left). The small picture was presented foveally and the 
large one at 6º eccentricity. The fixation point was present only in 
experiment 3 and consisted of a red LED light. 

Since, in practice, we are reducing the size of the foveal picture instead of magnifying the 

size of the eccentric one, foveal pictures presented in experiment 4 were (in height and 

width) multiplied by 1/C = 0.37. 
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The reduction in size of the stimuli was achieved by using the customary algorithms 

provided by the Graphics Card manufacturers (Cambridge Research Systems, UK). This 

did not affect the subjective quality of the stimuli (see Figure 3.2). 

3.2.3. Data analysis 

The results were analysed as described in section 2.2.3. Psychometric functions were fitted 

to each experimental series in each of the four experiments and the relationship between 

discrimination threshold (% morph) and ∆α was plotted. In order to evaluate how this 

relationship may differ in the periphery from the one that characterises foveal data, 

second-order polynomials were fitted to the data plots. The position of the minima in the 

four types of experiment was measured. The second derivative of the second-order 

polynomials was calculated to see if there were any qualitative differences between the 

different functions. The value of the second derivative shows the rate of change of the 

slope of the polynomial, which is related to the "shallowness" of the curve. The smaller 

the value of the second derivative, the more "shallow" or "flat" the curve fitting is. As 

discussed before, the shallowness of the curve is also a measure of the tuning of the visual 

system to the image statistics: broad tuning (i.e. more SF-channels are “active”) is related 

to a small value of the second derivative and fine tuning (i.e. less channels are “active”) 

will be related to a high value of the second derivative. Qualitative differences in tuning 

were measured. 
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3.3. Results 

3.3.1. Overview 

The results refer to the four experiments described above; each one of them was 

performed with four conditions, corresponding to the morph sequences (named mw, wm, 

bc and cb). There was also the measurement of the CSF, which was done with four 

conditions, corresponding to the eccentricities and sizes of each of the morph stimuli. 

The experiments were performed on seven observers (all postgraduate students or 

members of staff at Bristol University). All observers but CAP were naïve to the purposes 

of the experiment and two of them (CAP and BO) were psychophysically experienced. 

Because of availability and time constraints, not all experiments were performed on all 

subjects, but two subjects (KB and CAP) completed all four experiments and the CSF 

measurement in all conditions. 

Table 3 shows the details of all experiments. The first column shows the initials of each of 

the subjects and the first row shows the corresponding experiment. The second row 

details each of the conditions. A cross represents a completed experiment. 

Given the amount of data collected and the available space, we chose to show the 

complete results from only two subjects (KB and CAP). They are the ones that completed 

all experiments in all conditions and are representative of the rest of the measurements. 

However, all statistics were calculated using the whole collection of results.  



 

 
Experiment 1 

Foveal 

Experiment 2

3 deg 

Experiment 3

6 deg 

Experiment 4 

Foveal - small
CSF measurement 

 mw wm bc cb mw wm bc cb mw wm bc cb mw wm bc cb foveal 3 deg 6 deg small

KB x x x x x x x x x x x x x x x x x x x x 

CAP x x x x x x x x x x x x x x x x x x x x 

BO x x x x x x x x x x x x x x  

TW x x x x x x x x x x x x x  

JB x x x x x x x x x x x x x x x  

AG x x  x x x x x x   

IM x x   x x     

Table 3: Summary of all the subjects, experiments and conditions. 
The first column shows the initials of the subjects, the first row 
shows which experiment and the second row shows the conditions. 
A cross means that the given experiment was completed. 

Figure 3.3 shows the results for experiments 1 and 2 for subject KB for all four morph 

sequences. Similar morph sequences are placed side by side to make comparisons easier. 

The abscissas show the variation (∆α) in the slope of the amplitude spectrum and the 

ordinates the percentage of change in the morph sequence. The y-axis labels were chosen 

to keep similar scales in adjacent plots. Continuous curves represent the second-order 

polynomials that best fit all the data. Different y-axes were chosen to best show the data, 

given that the ranges of discrimination thresholds vary from one condition to another (e.g. 

it was necessary to use a much smaller percent step to discriminate the car from the bull 

than the man from the woman). 

The results for experiments 3 and 4 (observer KB) are shown in Figure 3.4. A second 

curve (made of broken lines) shows the same fit considering only part of the data points 

(see below). Results for the other main subject (CAP), considering the same experiments 

137



 

138

and conditions, are shown in Figure 3.5 (experiments 1 and 2) and Figure 3.6 

(experiments 3 and 4). 

 

Figure 3.3: Results for experiments 1 (left side) and 2 (right side) for 
subject KB in all four conditions. The abscissas show the variation 
(∆α) in the slope of the amplitude spectrum and the ordinates the 
percentage of change in the morph sequence. The curve represents 
the second-order polynomial that best fits the data. 
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Figure 3.4: Results for experiments 3 (left side) and 4 (right side) for 
subject KB in all four conditions. The continuous curve represents 
the second-order polynomial that best fits the data. The other curve, 
made of broken lines, shows the same fit with less data points. 
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Figure 3.5: Results for experiments 1 (left side) and 2 (right side) for 
subject CAP in all four conditions. The continuous curve represents 
the second-order polynomial that best fits the data. The other curve, 
made of broken lines, shows the same fit with less data points. 
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Figure 3.6: Results for experiments 3 (left side) and 4 (right side) for 
subject CAP in all four conditions. The continuous curve represents 
the second-order polynomial that best fits the data. The other curve, 
made of broken lines, shows the same fit with less data points. 

In some cases, (e.g. experiment 3, 6° eccentricity and ∆α = -1.2) the observer was unable 

to discriminate changes in the morph sequence even when the opposite extreme of the 

sequence was presented (morph change = 100%). This was the result of the extreme 
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whitening of the sequence, which removed all Fourier energy detectable by the observer at 

that eccentricity. 

In general, peripheral viewing at 3°or 6° has had surprisingly little effect on discrimination 

thresholds. The effect of extreme “blurring” or “whitening” on the thresholds is higher 

than the effects of displacing the stimuli to the visual periphery. In fact, seeing unmodified 

“natural” stimuli at 6° eccentricity produced thresholds roughly equivalent to those of 

“unnatural” stimuli viewed at ∆α=±0.8. The shape of the data remains roughly similar to 

the previous experiments (U-shaped), but the minima seem to be displaced towards more 

positive values of ∆α when eccentricity increases. 

There are some variations in the results between subjects. The size of the error bars 

reflects the fact that some discrimination thresholds were more clearly determined than 

others (sharper transition in the psychometric function leads to smaller error bars). Larger 

error bars are more common in extremely whitened images. 

3.3.2. Distribution of  the minima 

After examining the polynomial fittings of the exemplary results above, it is possible to see 

how the minimum value moves towards larger positive values of ∆α (i.e. images rich in 

low-SFs) when the eccentricity increases for all subjects. Figure 3.7 shows the average 

position of the minima for all the different experiments, considering all subjects. A Student 

t-test (with 95% confidence interval) shows that there is no difference between the foveal 

and 3° data (experiments 1 and 2), but there is a significant shift for the 6° pictures 

(experiments 3). The data for small-foveal results are also displaced towards the positive 
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∆α region. The same t-test reveals that the differences between 6° and small-foveal results 

are not significant. 

 

Figure 3.7: Average values of ∆α corresponding to the minima of the 
polynomial fittings, for each of the 4 experiments. Standard errors 
are also shown. Data from all subjects included. 

Table 4 shows the numerical values corresponding to the plot above, including n, the 

number of experiments in each case. 

 
Experiment 1

foveal 

Experiment 2

3 deg 

Experiment 3

6 deg 

Experiment 4 

foveal-small 

Avg 0.102 0.046 0.390 0.288 

STD 0.292 0.417 0.248 0.122 

n 25 25 16 9 

SE 0.058 0.083 0.061 0.040592 

Table 4: Average values of ∆α corresponding to the minima of the 
polynomial fittings for all observers. Values of the standard errors 
(SE) and number of experiments are also provided. Data from all 
subjects included. 
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Figure 3.8(a) shows the histograms and boxplots (which relate to the statistical dispersion of 

the data) (Howell 1997) corresponding to the distribution of the minima, for two of the 

experiments described above (experiments 1 and 2). The plot shows similar distributions 

for the foveal and the 3° data. Figure 3.8(b) shows the same kind of graphs for 

experiments 1 and 3 (foveal and 6° data) where it is possible to appreciate the separation 

between the histograms (confirmed by the t-tests). However, the value corresponding to 

experiment 4 (foveal-small pictures) lies statistically close to that corresponding to 

experiment 1 (foveal pictures) thus, we cannot consider the position of the minima as 

different (see Figure 3.9). 

If we interpret position of the minima in terms of optimality, we could argue that foveal 

(and near foveal vision) is optimised to discriminate morph changes in scenes with natural 

statistics and peripheral vision is better at discriminating changes in scenes with a steeper 

amplitude slope (blurred images). However, at this point we need to discuss the validity of 

these polynomial fits. 

If data points that have very high discrimination threshold values (see Figure 3.4, Figure 

3.5 and Figure 3.6) are included in the fits, they produce a strong bias on some of the 

second order polynomials (from where the minima values are extracted) towards the 

region of positive values of ∆α in a systematic way. This effect is considerable in 17 out of 

the 75 sets of results. Very high discrimination thresholds are generally produced when 

the stimuli are severely whitened (∆α = -0.8 or -1.2) and vary from observer to observer. 

For example, an observer may produce much higher thresholds for certain extreme 

conditions than another observer may. 
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Figure 3.8: Distribution of the minima for the Foveal and 3 Deg 
experiments (section a) and the Foveal and 6 Deg experiments 
(section b). Histograms and boxplots are shown. In part a, the 
average difference is not significant and in part b it is. Data from all 
subjects included. 
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Figure 3.9: Distribution of the minima for the Foveal-small pictures 
experiments and 6 Deg experiments. Histograms and boxplots are 
shown. The difference between the average values is not significant. 
Data from all subjects included. 

High discrimination thresholds are badly fit by the polynomials and clearly distort our 

results systematically towards one side of the graph. In order to estimate how big is this 

bias on the position of the minima, we need to fit our polynomials only to the data points 

that belong to the polynomial and compare with the previous results. To do this, we 

inspected the data and eliminated extreme cases before re-plotting. Broken lines on Figure 

3.4, Figure 3.5 and Figure 3.6 show examples of polynomials fitted to the data without 

considering these points. 

Figure 3.10 shows the average values and standard errors for the position of the minima 

in all four experiments. Points with high discrimination thresholds that clearly do not fit 

the polynomials were removed here. The effects of considering only data that clearly fit 

the polynomials are: 
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a) Dispersion of the data around its mean values increases (larger standard 

error bars). 

b) The shift of the minima towards positive values of ∆α is less marked than 

before. 

c) Unlike previous findings, Student t-test shows no significant difference 

between the two first bars (foveal/near-foveal results) and the two last bars 

(peripheral/size-reduced). 

 

Figure 3.10: Average values of ∆α corresponding to the minima of 
the polynomial fittings, for each of the 4 experiments. Only clear 
polynomial fits were considered. Standard errors are shown. Data 
from all subjects included. 

Table 5 shows the numerical values corresponding to the plot above. In this case, data 

points that clearly do not belong to the polynomials were not considered. 



 

 
Experiment 1 

foveal 

Experiment 2

3 deg 

Experiment 3

6 deg 

Experiment 4

fov-small 

Avg 0.054 -0.043 0.250 0.266 

STD 0.255 0.588 0.400 0.135 

n 25 25 16 9 

SE 0.051 0.118 0.100 0.045 

Table 5: Average values of ∆α corresponding to the minima of the 
polynomial fitting for all observers. Points that do not belong to the 
polynomials were not considered. Values of standard errors and 
number of experiments are also provided. Data from all subjects 
included. 

The removal of questionable data points from the polynomial fits has arguably produced 

data that are noisier, increasing the standard errors, but has not changed the shape of the 

plots or contradicted the previous results. Although error bars have increased, they have 

not overlapped each other and there is still a clear trend towards two separated sets of 

results: Based on this evidence, we can conclude that, unlike foveal and near-foveal (3°) 

vision, peripheral vision (at 6°) is not optimised for discriminating small spatial changes in 

achromatic natural scenes. This lack of optimisation is also reflected by foveal vision when 

the number of cortical projections is reduced to simulate peripheral conditions by means 

of an M-scaling. 

3.3.3. Discrimination thresholds values and M-scaling 

The results for experiments 3 and 4 (Figure 3.4 and Figure 3.6) show that discrimination 

thresholds for peripheral stimuli are consistently larger than for the corresponding small 

foveal stimuli. 

Table 6 shows the average values of discrimination thresholds for morph sequences with 

“natural statistics” (i.e. ∆α = 0) according to the eccentricity region where the stimuli was 
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presented (data from all subjects was included). Given that the absolute threshold values 

(in % morph) are different for the two sequences of morphed pictures used, they are 

presented separately in the table. The numbers on the table increase (this was confirmed 

by t-tests) when eccentricity increases. 

 Eccentricity 

 Car-to-bull and bull-to-car 

 0 (foveal) 3 deg 6 deg 0 (foveal-small pics) 

Avg 4.544 11.788 15.583 6.410 

STD 3.204 4.468 6.553 5.100 

n 11 11 10 5 

 Man-to-woman and woman-to-man 

Avg 12.65 18.922 20.860 15.457 

STD 3.737 6.752 5.132 2.410 

n 14 14 6 4 

Table 6: Average values for discrimination thresholds for morph 
sequences with “natural statistics” (∆α= 0) in different eccentricity 
conditions. Standard deviations are also shown. Data from all 
subjects included. 

From Table 6 we can infer the following: 

a) The decrease in performance between foveal and 6° experiments is about a 

factor of 2-3. 

b) The average values of the discrimination thresholds for foveal stimuli do 

not change dramatically with the change of stimulus size. 

c) M-scaling of the stimuli did not produce the same results for the foveal-

small experiment and the 6° eccentricity experiment. This is a common 
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feature of peripheral vs. foveal performance, where, despite the use of 

enlarged stimuli, foveal vision performs consistently better. 

This significance of this will be discussed below. 

3.4. Discussion 

3.4.1. Presence of  points below the discrimination threshold 

As pointed out before, a single experiment consisted of seven experimental series (and 

seven threshold values). As eccentricities were increased or retinal size projection reduced, 

some of the threshold values became increasingly more difficult to measure. Values of ∆α 

equal to –1.2 produced a very strong removal of low-SFs (whitening) that rendered the 

morph changes extremely difficult for peripheral vision to discriminate. Even when 

changes in the morph were equal to 100% (i.e. the face of the man replaced that of the 

woman, the car replaced the bull, etc.) observers could not perform the task. No 

thresholds were obtained and the corresponding threshold values (data points) were not 

included in this analysis (i.e. some of the graphs include only 6 data points). One could 

argue that if the differences between both reference pictures of the morph were larger, the 

observers could have discriminated them even in extreme whitening conditions. If this 

were so, there would have been an extra data point biasing the minima of the second-

order polynomials more towards larger positive values of ∆α and producing larger values 

of the second derivative (more narrowly tuned functions). Another argument would be 

that a less strong whitening (e.g. ∆α=-1.0) may have produced discrimination thresholds 

within the input contrast range of some of the SF-channels and therefore measurable 

(although high). Our view here is that including those points in our analysis would have 

produced biased results and therefore some of the second order polynomials were 
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calculated on six data points instead of seven. A similar effect is assumed for foveally 

viewed, reduced images. Other points (17 in total) could be measured (i.e. the observer 

was able to see something changing before reaching the 100% morph change value) but 

clearly do not belong to the polynomials; thus their overall effect is also to distort the U-

shape of the discrimination threshold vs. ∆α function. These 17 points were also removed 

from the analysis of the shape and position of the second-order polynomials. 

3.4.2. Are the “U-shapes” fitted by polynomials? 

In order to determine whether a second-order polynomial is the best equation to fit our 

experimental results, we performed a series of statistical analyses on the foveal morph 

experiment results, including both results obtained binocularly and monocularly (31 

experiments, including those in the previous chapter). It is easy to see that a second-order 

polynomial will fit our data better than a line (since a line is an extreme case of a second 

order polynomial with quadratic coefficient equal to 0) and in turn a third-order 

polynomial will fit the data better than a second-order one for the same reasons. What we 

want to demonstrate here is that the improvement in the fitting in the first case (second-

order polynomial over line) will be much bigger than the improvement in the second case 

(third-order over second-order polynomials). To estimate the goodness-of-fit, we used the 

same measure as in the previous chapter (χ2), defined by the following equation:  

∑ 





 −

=
i

i

SE
YY 2

2χ  

Equation 3.3 

where Y and Yi correspond to both the actual measures and the fitting and SE represents 

the standard error of the psychophysical measurements as described in Appendix A. 
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Table 7 shows the average and median values of χ2 for 31 sets of experimental results 

fitted with a second-order polynomial. The same table also shows how this measure of 

goodness-of-fit decreases when the order of the polynomial is changed, from 1st order 

(line) to 2nd order and from 2nd order to 3rd order. As the table shows, there is a much 

greater improvement when the order is increased from 1 to 2 than when is increased from 

2 to 3. This shows that a second order polynomial describes our data much better than a 

line and that there is definitively a dip in the shape of the data. 

Average values (n=31) Average Median 

χ2 (second-order polynomial) 16.108 10.477

Decrease in χ2 after increasing 
polynomial order from 1 to 2 45.639 26.377

Decrease in χ2 after increasing 
polynomial order from 2 to 3 5.963 1.486

Table 7: Average values of χ2 for the second order polynomial fits of 
our foveal data (31 experiments) and the decrease in this values when 
considering polynomials of 1st and 3rd order. 

Our second analysis is concerned with the statistical significance of the different threshold 

values obtained throughout this work. For example, we may want to establish that the 

variations in morph discrimination thresholds obtained for different values of ∆α are 

significant and also that there is a significant variation of these results across observers.  

Table 8 shows the raw experimental data (morph discrimination thresholds) obtained for 

our four experiments performed foveally. All observers were included here.  
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 Woman-to-man 

 AG BO CAP IM JB KB TW TT IG 

-1.2 8.70 35.87 21.10 50.23 28.96 20.07 34.29 27.10 19.67 
-0.8 11.08 19.99 14.69 35.01 27.05 9.53 10.35 23.22 19.07 
-0.4 9.92 23.23 10.79 17.70 13.15 11.49 11.39 21.25 8.18 

0 8.46 6.88 12.06 20.46 10.17 10.25 10.61 11.76 14.51 
0.4 6.75 20.73 12.72 22.99 9.53 11.62 8.57 14.55 13.68 
0.8 8.38 11.44 11.88 27.56 9.72 12.03 11.21 19.40 15.43 
1.2 11.53 23.00 20.86 32.98 13.33 18.88 16.84 27.72 17.26 

 Man-to-woman 

 AG BO CAP IM JB KB TW IG TT 

-1.2 24.48 100.00 19.83 98.68 35.29 24.18 19.10 18.45 18.51 
-0.8 16.61 31.08 16.13 25.72 31.52 15.58 21.33 14.77 14.27 
-0.4 14.81 20.83 12.04 17.36 19.09 14.55 15.69 16.53 9.78 

0 13.38 17.47 11.72 13.94 18.70 16.82 12.11 21.03 10.95 
0.4 11.20 19.65 13.11 18.62 17.99 18.25 11.33 14.87 12.93 
0.8 11.44 30.82 16.17 22.94 25.02 20.21 11.94 11.86 15.79 
1.2 10.86 51.51 14.45 34.11 28.59 29.48 17.36 19.51 14.45 

 Bull-to-car 

 AG BO CAP KB TW TT JB   

-1.2 11.06 72.01 2.11 2.91 4.53 4.25 3.48   
-0.8 7.88 5.74 3.28 1.39 3.51 2.16 1.98   
-0.4 8.80 4.57 1.74 1.66 2.76 2.26 3.24   

0 10.43 0.81 1.66 1.26 1.99 1.87 3.75   
0.4 6.93 6.08 1.55 2.49 2.46 2.08 3.12   
0.8 11.39 6.85 2.69 2.63 2.90 4.58 2.74   
1.2 15.85 8.45 3.88 5.22 3.00 7.77 4.61   

 Car-to-bull 

 BO CAP JB KB TW TT    

-1.2 74.85 11.54 8.95 29.38 19.99 9.39    
-0.8 18.79 4.63 6.54 6.10 17.21 7.67    
-0.4 9.31 4.00 4.58 6.69 12.15 5.94    

0 5.75 3.40 2.14 10.04 11.32 4.08    
0.4 10.37 4.40 7.38 6.15 9.24 2.40    
0.8 16.95 7.47 9.20 13.95 18.75 7.09    
1.2 21.34 11.22 20.18 24.56 16.31 6.61    

Table 8: Morph discrimination thresholds obtained for four foveal 
experiments (both monocular and binocular). All subjects included. 

Two-factor ANOVAs without replication were performed on the data corresponding to 

each of the four experiments. The results are summarised below: 
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Woman-to-man       
Source of Variation SS df MS F P-value F crit 
Rows 1604.467 6 267.4112 11.64108 5.24E-08 2.294598
Columns 1872.106 8 234.0132 10.18718 3.54E-08 2.138229
Error 1102.625 48 22.97134    
       
Total 4579.197 62         
Man-to-woman       
Source of Variation SS df MS F P-value F crit 

Rows 4652.156 6 775.3594 4.939719 0.000664 2.323993
Columns 4425.095 7 632.1564 4.02739 0.001864 2.237073
Error 6592.5 42 156.9643    
       
Total 15669.75 55         
Bull-to-car      
Source of Variation SS df MS F P-value F crit 

Rows 778.2379 6 129.7063 1.232801 0.31761 2.420521
Columns 967.7649 5 193.553 1.839636 0.135148 2.533554
Error 3156.38 30 105.2127    
       
Total 4902.383 41         
Car-to-bull       
Source of Variation SS df MS F P-value F crit 

Rows 1798.711 6 299.7852 3.549666 0.008935 2.420521
Columns 1381.507 5 276.3014 3.271601 0.017826 2.533554
Error 2533.635 30 84.45449    
       
Total 5713.853 41         
 

The results produced by the ANOVA (Microsoft Excel 2000) show that the F statistic is 

higher than the critical value in all cases, except for the data obtained from the bull-to-car 

experiment, in which it is smaller. A close examination of the raw data (see bold lettering 

in Table 8) shows that a single very high threshold value of 72.01% might be producing 

these ANOVA results by increasing the total variance of the dataset. The removal of the 

experiment that produced such a extreme value derives in an immediate improvement of 

the F statistic (see below). 
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Bull-to-car (less observer BO) 
Source of Variation SS df MS F P-value F crit 

Rows 61.16203 6 10.19367 7.646051 2.44E-05 2.363748
Columns 342.9567 6 57.15944 42.87405 5.95E-15 2.363748
Error 47.99499 36 1.333194    
       
Total 452.1137 48         
 

In summary, ANOVA results show that the morph discrimination thresholds values 

measured in our experiments are statistically independent both across morph sequences 

(changes in ∆α) and observers. 

3.4.3. Degree of  optimisation 

From the data shown in Figure 3.10, it follows that vision in the periphery is not 

optimised to the statistics of natural scenes. In order to evaluate more quantitatively our 

results and relate them to the number of active SF-channels, we analyse here how the U-

shapes may differ from foveal to peripheral data. To do this we calculate the second 

derivative of the second-order polynomial fittings of our results for experiments 1, 2, 3 

and 4 (having eliminated non-fitting points, all observers included). The value of the 

second derivative shows the rate of change of the slope of the polynomial, which is 

related to the "shallowness" of the "U-shaped" curve. The smaller the value of the second 

derivative, the more "shallow" or "flat" the curve fitting is. The shallowness of the curve is 

also a measure of the tuning of the visual system to the corresponding image statistics: a 

broad tuning (more active SF-channels) will be related to a small value of the second 

derivative and a fine tuning (less active SF-channels) will be related to a high value of the 

second derivative. 
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Figure 3.11 shows the average results and standard errors for the values of the second 

derivative of the polynomial fittings to the experimental data. Student t-tests (95% 

confidence interval) show that the differences between foveal and 6º are significant. The 

same is true for the difference between foveal and 3º but it is not true for the difference 

between foveal and foveal-small second derivative values. If we interpret these second 

derivative values as a higher degree of tuning, then 3º and 6° eccentricity plots 

(experiment 3) are more sharply tuned than the rest. According to these results, 

peripherally viewed images stimulate a smaller number of channels than foveally viewed 

images, disregarding image size. 

 

Figure 3.11: Average values of the second derivative of the 
polynomial fittings. Only points clearly belonging to the polynomials 
were considered. Standard errors are shown. 

3.4.4. M-scaling: is there an effect? 

One way of assessing the success of the M-scaling factor would be to plot simple CSFs 

for M-scaled gratings at different retinal locations. Figure 3.12 shows the CSF for observer 

CAP, obtained for small gratings (same size as the stimuli in experiment 4) viewed foveally 

and normal-sized gratings viewed at 6º eccentricity. The ordinate shows the reciprocal of 
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the lowest Michelson contrast needed for the observer to detect a sinusoidal grating of a 

specified SF. To be able to compare both plots, spatial frequency is expressed as cycles 

per picture width. 

 

Figure 3.12: Contrast sensitivity functions for observer CAP. The y-
axis shows the reciprocal of the lowest Michelson contrast needed 
for the observer to detect a sinusoidal grating of a specified SF. The 
SF values are plotted in cycles per picture width. Two conditions are 
shown: small gratings viewed foveally and large gratings viewed at 6º 
eccentricity. Error bars for foveal viewing are shown. The stimuli 
were viewed monocularly with the dominant eye. 

Given that the M-scaling factor was calculated on the assumption that only differences in 

the neural representation of the fovea in the cortex are relevant, once this is corrected, one 

might expect a similar form of the CSF at all retinal positions. From Figure 3.12 we see 

that this is the case. Foveal CSF is coincident with peripheral CSF for the retinal positions 

used in this study (6º eccentricity). Figure 3.13 shows CSF plots (in cycles/degree) for the 

other experimental conditions considered in this study (foveal, 3° and 6°). 
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Figure 3.13: Contrast sensitivity functions (measured with normal-
sized gratings) for three different eccentricities: 0deg (foveal) 3º and 
6º. Observer CAP. 

Figure 3.14 shows the average second-order polynomials obtained from our dataset (all 

observers) for all experiments. Because different morph sequences yield different 

discrimination thresholds, the top part of Figure 3.14 shows the average results for cb and 

bc sequences and the bottom part shows the same for the wm and mw sequences. To 

evaluate if M-scaling has compensated for the loss of visual processing in the periphery 

we look at the following: 

a) The shape and position of the CSF measured for 6° peripheral stimuli is 

very close to that of foveal stimuli when the stimuli are corrected (M-

scaled). This indicates that our M-scaling factor is adequate to correct for 

any grating acuity difference (Figure 3.12). 

b) Results produced in experiments 3 and 4 (see 6º and foveal-small plots in 

Figure 3.14) show that the position of the minima (∆α) and thus, the degree 
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of optimisation to natural statistics are similar for these stimuli. Foveal and 

near-foveal (3º) vision are optimised to discriminate changes in natural 

scenes while 6º eccentric vision is not. Scaling foveal stimuli to stimulate the 

same number of cortical receptors as 6º vision produces the same (non-

optimised) results. 

c) Table 6 shows that the average discrimination threshold values for M-scaled 

(i.e. reduced) stimuli are slightly higher than for normal stimuli viewed 

foveally and different from thresholds for peripherally viewed (at 6°) 

stimuli. This has also been confirmed by t-tests. In fact discrimination 

threshold values seem to depend on the eccentricity of the stimuli and not 

on their size (see vertical shifts of the plots in Figure 3.14). 

d) The value of the second derivative (related to the “tuning” or number of 

channels involved in the discrimination process) seems also to depend on 

the eccentricity of the stimuli, regardless of the size (M-scaling does not 

yield the same results as peripheral viewing). Figure 3.14 shows that U-

shaped polynomials become more sharply tuned as the eccentricity 

increases. 

Items (a) and (b) indicate that the “simple” magnification factor estimated by Equation 3.1 

may work well for the task, on the other hand, (c) and (d) show that M-scaling the stimuli 

does not seem to equate the thresholds between foveal and peripheral stimuli. 
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Figure 3.14: Average second-order polynomial fits obtained from the 
dataset (all observers). 

In general, the overall effect of reducing the size of the foveal stimuli (M-scaling) is to 

produce discrimination threshold functions that are shifted towards the right side of the 

plot (minima at more positive ∆α values), with slightly higher threshold values, while 

keeping its U-shape (similar second order derivative). A possible explanation for the shift 

(more positive ∆α values) is the reduction in the Fourier energy available for the 

discrimination task. In summary what “blurring” or “whitening” the morph sequences 

does is to reduce/boost the energy available to some of the SF-channels to do the task. 

For example, if the task was done foveally comparing local changes of contrast within a 

medium SF-band, let’s say centred around 3 cycles/degree, a reduction on the size of the 
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picture would produce a shift of this local Fourier energy towards higher SFs (e.g. to 11 

cycles/degree). This energy may be no longer suprathreshold after the shift, thus making 

the task harder (increasing contrast thresholds). In the case of the “blurred” pictures 

(positive values of ∆α), the lack of high-SF frequency energy means that the task was 

done using the (enhanced) low-SF bands. If the SF-band chosen was centred, for 

example, around 1 cycle/degree, a reduction in size would shift this energy to 3.7 

cycles/degree, which is well within the peak of SF-discrimination. The opposite effect 

would happen for “whitened images”. Overall, this would explain the shift of the lowest 

discrimination thresholds towards the region of positive ∆α values. This effect may also 

explain the similarity between the absolute results (threshold values) from experiment 1 

(foveal stimuli) and experiment 4 (foveal-small stimuli). 

The U-shape (related to the second order derivative) of the foveal-small data plot does not 

change substantially from the other foveal curves. This agrees with the idea that the 

number of SF-channels participating in the discrimination process changes from foveal to 

peripheral vision, regardless of the magnification factor. 

A plausible explanation for shape and position of the 6º (experiment 3) data comes from 

modelling the discrimination process (see Figure 4.21, next chapter). An increase of the 

bandwidth of the SF-channels involved (e.g. from 1.5 to 1.9 octaves) in the discrimination 

process may also produce an increase the discrimination thresholds and a shift of the 

minima towards more positive values of ∆α, similar to the curve produced by experiment 

3. 
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3.4.5. Comparison with other results from the literature 

To compare the deterioration of observers’ performance with results reported by other 

workers, we evaluated the increase in the discrimination threshold for unmodified (i.e. 

∆α= 0) morph series with visual eccentricity. Figure 3.15 shows the average increase in 

the discrimination thresholds in normalised units (with respect to the foveal value) for 

both types of morph sequences used in our experiments. Averages for man-to-woman 

and woman-to-man series (filled circles) are plotted separately from averages for car-to-

bull and bull-to-car series (open circles). 

 

Figure 3.15: Task difficulty versus eccentricity for the two kinds of 
morph sequences used in our experiments: mw/wm (filled circles) 
and cb/bc (open circles). The triangles represent the values threshold 
values produced by the reduced foveal images: mw/wm (filled) and 
cb/bc (open). Units are normalised (measured with respect to the 
foveal value). 

The average values corresponding to the foveal, M-scaled (reduced) images are also 

plotted as triangles (the filled triangle correspond to the mw/wm series and the open 

triangle to the cb/bc series). If our M-scaling had fully worked, these triangles should have 

the same y-axis values as 6° eccentric stimuli has. Average discrimination threshold values 
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were calculated from lowest point of the fitted second-order polynomials. All observers 

were included.  

From Figure 3.15, we calculated the value of the slope S, corresponding to the 

deterioration of the visual performance (as a proportion of the foveal performance) with 

eccentricity. A popular parameter used to compare results across studies is E2 (the 

eccentricity at which the task becomes twice as difficult as in the fovea). S can be 

estimated from the existing literature as the inverse of E2. Our calculated value of S is 

equal to 0.12 deg-1 for the mw/wm task and equal to 0.43 deg-1 for the cb/bc task. 

Table 9 shows some of the existing estimations of S for different visual tasks using 

different stimuli across the literature. Our own estimated values seem to lie close to those 

obtained for grating acuity tasks. The failure of the M-scaling implemented in this study 

may have its origins in the nature of the morph discrimination task being different from a 

grating detection task (such as the one used by Rovamo and Virsu (Rovamo and Virsu 

1979) to derive their magnification factors). 

In summary, M-scaling the stimuli cannot compensate for the differences in 

discrimination threshold results produced by experiments 3 and 4. Although our 

threshold measurements increase with eccentricity at a ratio not far from values measured 

for grating acuity tasks (see Table 9 above) just scaling the stimuli does not equalize foveal 

and 6° thresholds. It might be possible that using a different magnification factor (such as 

the one corresponding to measures of vernier acuity (Tolhurst and Ling 1988)) may have 

increased the thresholds measured in experiment 4. 

M-scaling only produces changes in the U-shape of the discrimination function, and its 

position along the x-axis, which become closer for both tasks when M-scaled. 



 
Task Stimulus S 

   from: to: 

Vernier acuity (Whitaker et al. 1992) line 0.56 0.81 

Vernier acuity (Whitaker et al. 1992) two isoccentric dots 0.51 0.94 

Vernier acuity (Virsu et al. 1987) two dots 0.53  

Spatial interval discrimination (Whitaker 
et al. 1992) two isoccentric dots 4.54 14.28 

Curvature detection and discrimination 
(Whitaker et al. 1993)  0.44 0.70 

Bisection (Whitaker et al. 1992)  12.5 14.28 

Displacement detection (Whitaker et al. 
1992) referenced 0.74 0.94 

Displacement detection (Whitaker et al. 
1992) unreferenced 0.09 0.15 

Displacement detection (Whitaker et al. 
1992) unreferenced 0.054 0.074 

Orientation (Makela et al. 1993) line 0.51  

Visual acuity (Virsu et al. 1987) grating 0.41  

Visual acuity (Klein and Levi 1987) grating 0.38  

Detection of geometric image distortions 
(Rovamo et al. 1997) 

pictures of human 
faces 0.55  

Visual acuity (Virsu et al. 1987) Snellen E chart 0.58  

Visual acuity (Virsu et al. 1987) Landolt C chart 1  

Crowding (Toet and Levi 1992) Letter T 2.5 5 

Table 9: Value of S (deterioration of the visual task normalised to the 
foveal value) obtained by different workers. Notice that our values 
are close to those measured for grating acuity tasks. Calculations 
made by Rovamo et al (Rovamo et al. 1997). 

These results are not surprising, given that for some peripheral vision tasks, foveal vision 

has been reported to perform better than peripheral vision, regardless of M-scaling. 

Examples of these are tasks requiring perimetric thresholds (Drasdo and Thompson 1989; 

Wood et al. 1986) and processing of spatial relationships (Levi and Klein 1986; Levi et al. 
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1985; Paradiso and Carney 1988; Paradiso et al. 1989; Rentschler and Treutwein 1985; 

Stephenson and Braddick 1983) among others. There is also substantial amount of 

evidence showing that for various perceptual tasks, the threshold gradients might be 

steeper or flatter than the proposed inverse of the cortical magnification (Fendick and 

Westheimer 1983; Hampton and Kertesz 1983a, b; Klein and Levi 1987; Levi and Klein 

1986; Levi et al. 1985; Rentschler and Treutwein 1985; Stephenson and Braddick 1983). 

That is, our choice of scaling parameters in the calculation of the cortical magnification 

factor (see Table 9 above) may not be consistent with other workers. 

3.4.6. Possible effects of  image type 

Figure 3.15 shows a different slope S (deterioration of the visual performance as a 

function of visual eccentricity) for the two types of morph sequences (mw and cb). This 

difference is not related to the fact that the metric used to measure discrimination in each 

of the sequences is different (since the units in Figure 3.15 are normalised) but it might 

depend of another factors such as differences in the type of stimuli or different morphing 

technique. 

Since one type of morph sequence (mw and wm) contains a picture of a human face, we 

cannot discard the effects of higher-level visual functions affecting the discrimination task. 

There is evidence that attention is not evenly distributed within static frontal views of a 

face. In such cases, there is a hierarchy of salience in which more attention is paid to the 

hair, then to the eyes, mouth, nose, etc. following roughly that order (Shepherd et al. 

1981). These particular properties of human faces may have determined a different 

approach to the same task involving higher level (attention-related) processes, which may 

account for the different performance degradation in the two types of stimuli (see Figure 
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3.15). These effects might be eliminated by performing the same morph discrimination 

experiment on an inverted (upside down) version of the mw and wm sequence. 

Another possible reason as to why the two types of morph sequence produced different 

values of S (deterioration of visual performance) is that they were created by a different 

morphing algorithm, which may have introduced differences in the way intermediate 

images were produced. 

3.5. Conclusions 

a) Our results show that peripheral vision at 6º temporal eccentricity is not 

optimised to discriminate local changes in scenes with natural second-order 

statistics in the same way as foveal vision is (shift on the position of the 

minima towards the “blurred” side of the U-function). This effect could be 

produced by an increase in the SF- channels bandwidths (see next chapter 

on modelling these results). 

b) Peripheral vision is increasingly more “tuned” (steeper U-shapes in our 

morph discrimination functions) than foveal vision. This may be related to 

less SF-channels being used in the periphery than in the fovea with 

increasing bandwidths (see next chapter on modelling these results). 

c) The values of the discrimination thresholds for “natural” scenes (∆α= 0) do 

not change substantially when the foveal stimuli are reduced in size (M-

scaled) to equate to those presented peripherally at 6°. M-scaling can 

compensate for other effects like the shift of the minima or the changes in 

shape (sharper tuning) of the U-function, but does not yield the same 
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discrimination threshold results in both experiments. For the discrimination 

task considered, the fovea is consistently superior in performance to 

peripheral vision in a way that cannot be compensated by our single scaling 

factor. 





 

Chapter 4.  
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C h a p t e r  4  

MODELLING THE RESULTS 

Can a simple computational model predict the discrimination 
thresholds for morphed objects in natural scenes? 

4.1. Overview 

In the previous chapters, we focused on the relationship between the human visual system 

and the second-order information present in the visual environment. There, we argued 

that the HVS is optimised to encode the information in the natural visual environment. 

Our conclusions derive from psychophysical experiments, i.e. comparing people's 

discrimination thresholds for small spatial changes (produced by 'morphing') in natural 

and unnatural (spectral slope modified) visual stimuli. In this chapter, we attempt to 

explain our previous results using a relatively simple computational model of the low-level 

discrimination process. Our general aim is to determine whether our results for this visual 

discrimination task can be explained without involving “higher” (and more complex) 

cortical processes. 

There are a number of computer-based image discriminability models (Ahumada et al. 

1998; Ahumada et al. 1995; Daly 1992; Watson and Solomon 1997) capable of predicting 

the visibility difference between a pair of images. Some of these models have been tested 

or compared for different tasks, such as detecting objects against natural backgrounds 

(Rohaly et al. 1997). Model algorithms can have different levels of complexity, from a 

simple difference between two images to (physiologically plausible) multiple spatial 
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frequency channel models with several types of masking (Ahumada 1987; Girod 1989). 

The advantages of using models that are more complex are not yet very clear (Rohaly et al. 

1997). 

One of the simplest and yet plausible ways for the HVS to evaluate differences between 

pictures would be to compare local spatial information within each spatial-frequency 

channel. According to this, we calculate differences in contrast between two images 

(reference and test) within a number of SF-channels designed to have the spatial-

frequency bandwidth of simple cells in the visual cortex. Our model assumes that simple 

cells in several independent spatial-frequency bands (i.e. at each SF and location) sample 

the reference and test stimuli point-by-point, and that each cell then signals any local 

differences in the spatial structure of the two stimuli. We considered two types of 

interaction among these cells within a given channel (within-channel masking) using a 

Minkowski summation with two different exponents (Quick 1974; Watson 1987). There 

was also a consideration of interactions among channels (the contrast gain of a channel is 

modified by activity from the others), which may produce masking (Foley 1994; Teo and 

Heeger 1994, 1995). 

By “customising” the model to include each observer's contrast sensitivity to sinusoidal 

gratings, we are able to replicate the forms of the relationships between discrimination 

threshold and spectral slope, and the ways that these differ between picture sets and 

observers. To keep things simple, no attempt was made to consider different spatial 

frequency orientations in our modelling. 



 

173

4.2. Methods 

Our model is based on evidence (both physiological and psychophysical – see 

Introductory Chapter) for the existence of multiple channels tuned to SF and it is similar 

in some ways to DCTune16 (Watson 1993a) and Daly’s VDP17 (Daly 1992). Under this 

view, the spatial contrast sensitivity function is the envelope of many narrowly tuned SF 

selective channels (Blakemore and Campbell 1969). Each of these spatial frequency filters 

responds to the power in the region that falls within its frequency band. Here the analysis 

over the same restricted region is carried out in parallel by these filters (on a point-by-

point basis). 

4.2.1. Contrast in complex (natural) images 

We calculate the contrast for every image in the morph sequence within spatial-frequency 

channels (bands) designed to have the spatial-frequency bandwidth of simple cells found 

in the visual cortex (about 1 - 1.5 octaves (De Valois et al. 1982a; De Valois et al. 1982b; 

Movshon et al. 1978a; Tolhurst and Thompson 1981)). We define contrast (Peli 1990) 

within a frequency-band F at a point (x, y) as: 

),(
),(),(
yxl
yxayxC

m

F
F =  

Equation 4.1 

                                           
16 The DCTune compression algorithm was developed to improve the quality of compressed pictures using 

a quantization matrix that is optimised according to local variations within the image. Since each image 
has local variations, having different quantization matrices that are adapted for individual regions of the 
image improves the compression. The most important local variables that DCTune handles are 
luminance, local spatial frequency and orientation.  

17 Daly’s VDP (visual difference predictor) model was developed to measure visual differences in images. It 
is based on filtering techniques and involves luminance masking, detailed CSF for luminance, intra-
channel contrast masking and error pooling. 
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In this equation,  is the band-passed filtered version of the image convolved with 

a circularly-symmetric operator, whose spatial-frequency characteristic is: 
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Equation 4.2 

and is an estimate of the local mean luminance, derived from a low-pass filtered 

version of the image using the circularly-symmetric operator whose spatial-frequency 

characteristic is: 
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Equation 4.3 

Here f is spatial frequency, F is the centre frequency, σ is the standard deviation of the 

Gaussian-frequency tuning curves. This definition of contrast conforms to the general 

principle that it is some measurable luminance modulation divided by the mean luminance 

and captures, the perceived contrast of complex images (Peli 1990). 

No provision was made to account for orientation tuning (our filters are circularly-

symmetric), mainly because the level of complexity of such a model (and the 

computational power required to run it) would be much bigger. Another point to consider 

here is that our original images (man, woman, car and bull) did not contain any strongly 

oriented features, (such as horizon/sky, trees, buildings, etc.) which could bias the 

distributions of SF-orientations in any specific direction. In our approach, we aim to keep 

things as simple as possible, trying to find the basic properties of the HVS that might 

allow it to perform our discrimination task. The filters were centred on 2, 3, 4, 6, 8, 12, 16, 
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24 and 32 cycles/picture. σ in Equation 4.2 and Equation 4.3 was set to be 0.28 times F 

resulting in a bandwidth of 1.5 octaves. This value of σ was chosen to be reasonably close 

to that of human channels (Blakemore and Campbell 1969) and of neurons in the primary 

visual cortex of cat and monkey (De Valois et al. 1982a; Movshon et al. 1978a; Tolhurst 

and Thompson 1981). Given a spatial-frequency band, we can compare the contrast of 

the reference (first image of the morph sequence) to the contrast in the same location of 

any of the other images the other (test) images. 

4.2.2. Detection thresholds for sinusoidal gratings 

To determine whether the difference in equivalent contrast of the test and reference 

images in any frequency band centred on F is large enough to be detectable by the 

observer, we need to know how well the observer can discriminate changes in the “real” 

Michelson contrast of simple sinusoidal gratings. Michelson contrast is defined as: 

minmax

minmax
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LL

C
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−

=  

Equation 4.4 

Where Lmax and Lmin are the maximal and minimal luminances in the grating. 

Rearranging the equation as:  
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Equation 4.5 
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We can see that the upper term (Lmax – Lmin)/2 represents the luminance modulation 

whereas the lower term (Lmax + Lmin)/2 is the mean luminance of the grating. 

The observer’s contrast discrimination functions for gratings were not measured directly. 

Instead, we used the template for the “dipper” function (see Figure 4.1) for contrast 

discrimination (Legge 1981; Legge and Foley 1980; Nachmias and Sansbury 1974). This 

dipper was found to be valid for a variety of observers and threshold discrimination 

experimental conditions (Foley and Legge 1981; Legge and Foley 1980). Figure 4.1 

represents the just discriminable contrast difference between a pair of gratings plotted 

against the lesser contrast in log-log coordinates. The shape of the plot in Figure 4.1 was 

obtained using 2AFC techniques where observers were presented with two gratings, one 

of contrast C and another of contrast C+ ∆ C and had to decide which one was C+ C 

(Nachmias and Sansbury 1974). The function increases monotonically on the right side of 

the plot but on the left side (very small values of reference contrast) the function 

decreases. This effect is also known as facilitation effect (the increment threshold is actually 

lower than the reference), and it is confined to very low background contrasts. Although 

there is a general agreement about the facilitation effect, there is still some uncertainty as 

to whether the rising part of the discrimination follows Weber’s law (

∆

∆ C= kC1.0) for 

suprathreshold stimuli. This is especially true for the detection of sine wave gratings in visual 

noise, where threshold contrast rises in proportion to the Fourier energy of the noise 

(Pelli 1979; Pollehn and Roehring 1970; Stromeyer and Julesz 1972). The value of the 

exponent that best describes the line part of Figure 4.1 has been found to be less than 1.0 

in several studies (Nachmias and Sansbury 1974; Tolhurst and Barfield 1978) sometimes 

as low as 0.5 (Pelli 1979) and up to 0.7 (Legge 1979). However, our results (see below) 

show that the exact shape of this template is not critical for our modelling. 
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Figure 4.1 shows an example of a contrast discrimination “dipper” template function. The 

“line” part of the dipper function has a slope (in log-log coordinates) of about 0.7. The 

function was produced by averaging psychophysical measurements of 3 observers (Dr 

D.J. Tolhurst, personal communication). The numerical values on the axis of Figure 4.1 

were normalised so that the template can be applied to results from test gratings of 

various SF, using the adequate contrast sensitivity value. 

 

Figure 4.1: Standard contrast discrimination “dipper” template. Its 
overall shape was obtained for observers discriminating between 
gratings of slightly different Michelson contrast. The plot represents 
the just discriminable contrast difference between a pair of gratings 
plotted against the lesser contrast in log-log coordinates. 

The positions of the template for discriminating between gratings of spatial frequency F (on 

abscissa and ordinate) were determined by measuring the observer’s contrast thresholds 

for detecting sinusoidal gratings of spatial frequency F. To do this we used a 2AFC 

technique where the stimuli were square patches of stationary grating of the same size as 

the pictures used in each of the morph discrimination experiments. The same type of 

masking (a Gaussian roll-off –see section 2.2.2) was used to reduce edge effects. Figure 

4.2 shows an exemplary plot of these detection thresholds for sinusoidal gratings in terms 

of their Michelson contrast. These contrast detection thresholds (e.g. equal to 0.006 for a 
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grating of 2.5 cycles/degree in Figure 4.2) were used to determine the position of the 

standard discrimination template (dipper) for the corresponding spatial frequency. 

 

Figure 4.2: Exemplary plot of (foveal) detection thresholds for 
sinusoidal gratings of different SFs. The arrow shows the 
corresponding detection threshold for a SF of 2.5 cycles/picture. 

Figure 4.3 shows how the positioning of the dipper template is done, using the value of 

contrast detection obtained psychophysically. In this figure, both absisa and ordinate of the 

dipper template have been multiplied (scaled) by a factor of 0.006, so that the minimum 

value for contrast difference occurs for a reference Michelson contrast value of 0.006 and 

the plot tends asymptotically to 0.006 when the reference Michelson contrast tends to 0. 

This corresponds to the fact that “discriminating” between two gratings, one of which has 

a contrast equal to 0, is equivalent to “detecting” the other. This is done for each of the 

central SF corresponding to the model’s bands. 

In summary, thresholds for detecting sinusoidal vertical gratings were measured for 

observers TT, CAP and KB. The gratings had the same size as the pictures described in 

section 3.2.1. They were also viewed in similar conditions (same monitor and same 

distance). The spatial frequencies of the gratings were 2, 3, 4, 6, 8, 12, 16, 24 and 32 cycles 
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per picture. Observers CAP and KB were also presented with the same set of gratings for 

monocular viewing, foveally and at 3º and 6º eccentricities. A special set of gratings, which 

was reduced in size according to the cortical magnification factor described in Section 

3.2.2, was produced for measuring jnds foveally. 

To be able to produce very small changes in the Michelson contrast of the sinusoidal 

gratings presented on the screen we used our VSG2/3 graphics card in 12-bit resolution18 

(or Pelli/Watson modification mode) (CRS 1995; Pelli and Zhang 1991). This method 

allows higher resolution than 8-bit on an 8-bit-per-pixel system, by adding together the 

two palette outputs for each colour. 

 

Figure 4.3: Positioning of the dipper template for 2.5 cycles/degree, 
using the contrast detection threshold for that SF, in the conditions 
of Figure 4.2. 

                                           
18 As explained in VSG user's guide version 4.02: Palettes and LUT's. Cambridge Research Systems Ltd., 

Kent, UK. 73-75 (1995). 
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4.2.3. Modelling detection thresholds 

The absolute value of the contrast difference at each point (x, y) between the reference 

picture and all the test pictures was measured for the central 68 x 68 points, 

corresponding to an area of the picture not modified by the masking (see Figure 4.4). 

),(),(),( 0,,, yxCyxCyxC FjFjF −=∆  

Equation 4.6 

 Equation 4.6 shows this relationship where F is the SF band considered, and j is the 

morphed (test) image considered. j=0 stands for the reference image. 

 

Figure 4.4: Sampling between the reference and each of the pictures 
of the morph series. The absolute value of the contrast difference at 
each point (x, y) between the reference picture and all the test 
pictures is measured for the central 68 x 68 points. This is compared 
to the average of those two contrasts. 

The average contrast value ),(, yxC jF  was also computed for each pair of points. 
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Equation 4.7 
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 Subsequently, we recorded for each value of ),(, yxjFC , the difference between 

 and the corresponding point on the dipper (See Figure 4.5). ),(, yxC jF∆

( ) ( )[ ])(log),,(log),( ,, CDCyxCyxI FjFjF −∆=  

Equation 4.8 

In the previous equation  stands for the difference between our dataset and the 

dipper (similar to that of Figure 4.6) and  is the corresponding dipper value. In Figure 

4.5, points above the dipper represent changes in contrast that are already suprathreshold 

and should be easily detected by the observer. Points below the dipper represent changes 

in contrast that are not yet detectable by the observer and points lying on the dipper 

represent values of contrast change just discriminable by the observer. 

jFI ,

FD

 

Figure 4.5: Detectability of changes in the morph sequence according 
to the ‘dipper’. Points represent predicted values of C Plotted 
against their average value 

∆
C . Hollow circles are values that are 

suprathreshold (i.e. easily detected by the observer). Filled circled are 
values that are just discriminable (at threshold) and squares are values 
that are not yet discriminable. 
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The average difference for all the central (68x68) points in each picture j and for each 

band F was calculated. 

6868
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Equation 4.9 

 

Figure 4.6: Four examples of averaged contrast difference between 
reference and test pictures (jnds) for each of the pictures in a 
sequence. The x-axis shows the percent of morph change in the 
sequence. The exemplary plots correspond to ∆α equal to –1.2, -0.4, 
0 and 1.2. 

Plots in Figure 4.6 show the average difference jFI ,  (just noticeable differences or jnd - in 

log units) between the predicted contrast difference and the dipper. Each line corresponds 
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to one SF band (central SF = 2, 4, 8, etc. cycles per picture). Values of jnd below zero 

represent contrast changes that should be invisible to the observer and values above zero 

represent changes in contrast that should be visible. The process was repeated for all SF 

bands F and all the values of ∆α including the "unnatural" sequences (∆α ≠ 0). 

Figure 4.7 shows the morph discrimination thresholds predicted by each of the SF 

channels as a function of the amplitude slope offset (∆α) for the same data shown in 

Figure 4.6. In this exemplary case, the lowest morph discrimination threshold is predicted 

for ∆α= 0 and the channel corresponding to SF= 8 cycles/degree. 

 

Figure 4.7: Values of morph threshold predicted by each of the SF 
channels as a function of the amplitude slope offset (∆α). This figure 
was obtained by replotting the data from Figure 4.6. The values 
corresponding to SF= 32 cycles/deg are not shown here since they 
never produced a “crossing”. 
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4.2.4. Contrast threshold and probability summation across space 

Early studies (Robson and Graham 1981; Sachs et al. 1971) on the relationship between 

low-contrast stimuli and the narrowly-tuned spatial frequency channels have pointed out 

the need to account for non-linear interactions among channels when modelling. One of 

these models (called the probability summation model) (Sachs et al. 1971) consists of a large 

number of independent channels applied to the original stimulus. Noise (modelled as a 

Gaussian probabilistic sum) is then added to the stimulus to account for the variability of 

the subject’s responses. A computationally simpler version (called the vector magnitude model) 

combines the outputs of all the channels in a non-Euclidean summation before the noise 

is added and the detection decision taken (Quick 1974). These models account for a range 

of psychophysical results and can predict detectability of periodic patterns (Graham et al. 

1978; Kulikowski and Tolhurst 1972; Robson and Graham 1981), image discrimination 

(Watson and Robson 1981) and detection (Rohaly et al. 1997). 

A second stage of our algorithm was developed to model any interactions among 

receptors in different SF-channels and among the channels themselves. It contemplates 

the possibility that all receptive fields (at each x, y location) interact, placing a weight on 

the fields that cross the dipper first and also considering the same type of rule to act 

across channels. We used the Minkowski sum of individual contributions with exponent β 

equal to 4 (approximation to probability summation) (Graham et al. 1978; Quick 1974; 

Robson and Graham 1981; Rohaly et al. 1997). General case: 

β
β

1









= ∑ inputOutput  

Equation 4.10 
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The interaction among receptive fields is modelled as: 
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Equation 4.11 

which is similar to writing the following expression: 

( ) ( )[ ])(log),,(loglog),( ,
1

, CDCyxCyxI FjFjF −∆= −  

Equation 4.12 

Equation 4.11 and Equation 4.12 show a change in the metric used to estimate the 

difference between  and the corresponding point on the dipper. Instead of 

computing this as a difference in log space, it is now computed as a ratio. The reason for 

this metric change is purely computational and its overall effect is to increase the 

weighting of points that are well over the dipper over those that are below when 

calculating the average difference 

),(, yxC jF∆

jFI ,  (see Equation 4.13). 
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Equation 4.13 

If two SF-channels reach the detection criteria at the same time, then the picture is likely 

to be more discriminable than if only one crosses. With this in mind, we applied the same 

weighting laterally across channels. 
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4
4
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Equation 4.14 

Equation 4.14 shows how we estimated the just noticeable difference from one morph 

picture to another including probability summation across space in our calculations. Note 

that Equation 4.9 is a special case of Equation 4.13 where the Minkowski exponent β is 

equal to 1. 

Figure 4.8 shows an example of how the discrimination threshold is calculated from the 

Minkowski lateral summation across channels. The plots show how jFI ,  varies as the 

morph sequence changes in four different cases (∆α = −1.2, −0.4, 0, 0.8). Thick lines 

show how the Minkowski summation of these values (determined by Equation 4.14) vary 

along the same axis. The experimentally-measured morph discrimination threshold for 

natural scenes (∆α =0) is introduced (see bottom-left panel in Figure 4.8) and its value 

determines the “magic number” that will represent the threshold for all other morph 

sequences in this version of our model. 

jFI ,  (see Equation 4.9) represents the contribution of each channel F to the detection 

process in every image j of the morph sequence. In our first modelling approach, we treat 

the various spatial frequency channels as operating independently of each other. This is 

despite results from research investigating masking of one spatial frequency component 

by another (Foley 1994). To account for these masking effects, lateral interactions are 

commonly added so that the contrast gain of a channel is reduced by activity from other 

channels (Teo and Heeger 1994; Watson and Solomon 1997). Rohaly et al (Rohaly et al. 

1997) explored the effect of adding an overall contrast gain factor to three different types 
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of model and concluded that the least improved was the multiple spatial frequency 

channel model. In our case, we decided to start with the simplest case (no arbitrary 

parameters) and introduce arbitrary parameters later. 

 

Figure 4.8: Example of how the morph discrimination threshold is 
determined for Rule 4. The graphs show the values of 

jF ,I along the 
morph sequence for each SF channel. The thick line represents the 

Minkowski summation of these values. In the simplest case, 
measured morph discrimination thesolds for natural statistics 
determine the “magic number” that would decide the model’s 

predictions for all other morph series. 

To simplify matters, we used two different Minkowski exponents (β) to represent models 

with or without receptor and channel interaction and two different jnd threshold criteria, 

which are explained below. 
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4.2.5. Modelling rules 

The contribution of the SF-channels F to the determination of the threshold image j was 

modelled using 2 different rules (labelled after the Minkowski exponent β) Rule 1 and 

Rule 4, each one includes two variations a and b (depending on the free parameters used)  

a) Rule 1a: No receptor and channel interactions. No free parameters. This 

could be also called “winner takes all” rule. The Minkowski exponent 

considered is β=1 which means that the probability that one channel will 

signal is independent from the probability that another channel will. The 

threshold value of jnd considered is also the simplest possible: the first spatial 

frequency band where the jnd is zero. The picture pair j and j+1 where this 

happens is then recorded and the corresponding % morph threshold is 

calculated by linear interpolation. This extremely simple criterion allowed us 

to determine a discrimination threshold without adding any free parameters 

to the model. 

b) Rule 1b: No receptor and channel interactions. Free parameter (best 

experimental data fit). β is still equal to 1 but a free parameter was 

introduced. This parameter determines the amount of vertical shift that 

needs to be applied equally to all dipper functions so that the best fit 

between the model results and the data points is achieved (considering all 

seven morph sequences). This is equivalent to the addition of the same 

constant value to all curves in Figure 4.6 so that the jnds obtained best fit 

the experimental data. 
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c) Rule 4a: Interaction among receptors and channels. Free parameter (fit 

forced through central point). β is equal to 4 (probability summation) to 

account for interactions between the different receptors and channels. A 

threshold jnd value was decided by arbitrarily forcing the model to fit one of 

the measured data points (∆α = 0). In practice, this means to find what 

value of a threshold jnd that would make the model fit the central point and 

use this “magic number” to determine the discrimination threshold for all 

other conditions (different values of ∆ α). See Figure 4.8 for an illustration 

on how this is accomplished. 

d) Rule 4b: Interaction among receptors and channels. Free parameter (best 

experimental data fit). β is again equal to 4 but a threshold jnd value was 

arbitrarily decided so that the model best fits the psychophysically measured 

data points for the 7 sequences tested (∆α = -1.2, -0.8, -0.4, -0, 0.4, 0.8, 1.2). 

The best fit was decided in the same way as in Rule 1b. 

Figure 4.9 shows a flow chart (from top to bottom) of the different modelling stages. 

There it is possible to see how every picture in the morph sequence is compared to the 

reference and its visibility is determined by a set of rules that range from the very simple 

(Rule 1a) to the more complex interactions between channels and receptors (Rule 4a and 

4b). 
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Figure 4.9: Flow chart of the model including all its rules and 
variants. From top to bottom it shows the analysis that is performed 
in every single image of the morph sequence until a set of decision 

rules determine which one is “visible at threshold”. 

To estimate the best experimental data fit in all cases, an iterative algorithm was used to 

find the value of the discrimination threshold (or “magic number”) that minimises the 

relative residual sum of squares ( ) between the model and the experimental results, 

where  is defined by: 

RSSE

RSSE

[∑
=

⋅−=
n

i
iiiR WYYSSE

1

2)ˆ( ] = Relative (or weighted) residual sum of squares. 

Equation 4.15 
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With  being the experimental values and  the model’s predictions. n is the total 

number of data points in one plot (n= 7). W  (the set of weighting parameters) is 

determined by: 

iY iŶ

i

( )2

1
SE

Wi = ; normalised so that  ∑
=

=
n

i
i nW

1

SE represents the standard error of each experimental data point i as discussed in 

Appendix A. Under this definition, if  is equal to 0, the curve passes through every 

data point. 

RSSE

The computer algorithm used to implement our discrimination model in all versions was 

based on an algorithm originally written by Dr D.J. Tolhurst in Pascal programming 

language. Our algorith was written in Delphi 3 and runs on a 32 bit (Windows 95) 

platform. 

4.3. Results 

4.3.1. Modelling experimental results I (binocular, foveal data).  

Rule 1: 

Figure 4.10 shows the experimental results described in section 2.3 and the predictions 

corresponding to Rule 1a (solid lines) and Rule 1b (broken lines) of the model. The points 

represent the actual experimental results and standard errors. 

From Figure 4.10 it is possible to see that the predictions of the model (using both 

variations of Rule 1) fit the discrimination data quite well for both observers. In general, 

the model predictions have the right shape for both sets of data and in many cases the 
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broken line goes through much of the data (in few occasions the two curves overlap). 

This is generally true for the two cases considered. 

 

 

Figure 4.10: Experimental results (black dots) and model predictions 
using Rule 1a (solid lines) and Rule 1b (broken lines) for observers 
TT and CAP. Error bars are also shown. Foveal binocular viewing. 
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One of the observers (TT) seems to agree thoroughly with the model while the other 

(CAP) agrees in the general shape (U-shape) but seems to have detected some clues that 

the simplest version of the model did not account for, especially for the car-to-bull 

sequence. Adjusting the discrimination threshold for jnds so that it fits as much as possible 

data points did produce an improvement on the model’s results. Notice that any shift of 

the model results along the y-axis comes accompanied by (non-linear) changes in shape in 

the model results’ curves. In practice, these non-linearities mean that sometimes the 

adjustment of the model’s parameters to best fit the data does not produce dramatic 

changes in the goodness-of-fit of the model. This is discussed later. 

Rule 4: 

Figure 4.11 shows the same experimental results and the model’s predictions using Rule 

4a (central point forced fit) and Rule 4b (best experimental data fit). Solid lines represent 

the model’s prediction in the case of Rule 4a and broken lines show the predictions for 

Rule 4b for observers TT and CAP. 

An inspection of Figure 4.11 shows a predictable improvement on the model’s fit when 

we allow the whole system to adjust to best fit the dataset. The choice of the central data 

point ( α=0) is not always the best one for Rule 4a. In some cases, for example man-to-

woman for observer TT, forcing the model to go through this point reduces considerably 

the quality of the prediction. In section 4.4.3 (discussion section below), we evaluate 

whether the addition of the hypothesis of interaction among channels and the free 

parameter has produced a significant improvement to our modelling. 

∆
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Figure 4.11: Experimental results (black dots) and model predictions 
using Rule 4a (solid lines) and Rule 4b (broken lines). Observers TT 
and CAP in foveal, binocular viewing. 



 
4.3.2. Modelling experimental results II (monocular, foveal and peripheral data).  

Using a similar criterion as in the previous section, we applied our model to some of the 

monocular data obtained before (see section 3.2.1) for stimuli viewed foveally and 

peripherally. Only two subjects (the ones who completed all experiments and conditions, 

KB and CAP) had their results modelled. The number of spatial frequency channels 

considered was also reduced to five (comprising 2, 4, 8, 16 and 32 cycles/picture) to 

decrease the computational load of the model. 

The thresholds for detecting sinusoidal luminance gratings were determined for all 

conditions relevant to the experiments described in 3.2.1 (foveal, 3º, 6º and foveal-small) 

viewed monocularly with the dominant eye. The thresholds were estimated as described 

above in section 4.2.2. When model predictions were outside the range of the dataset 

employed (e.g. when the model did not reach threshold at 100% morph change) it was 

considered to be equal to the extreme of the sequence (100% morph change). This 

happened in only in very few cases for extremely whitened sequences ( α= -1.2). ∆

Rule 1: 

Figure 4.12 to Figure 4.15 show a comparison between the modelling results (for Rule 1a 

and Rule 1b) and the experimental results. As with the previous results, there is an 

improvement with the addition of a degree of freedom to the model (broken lines in the 

figures), although in many cases this improvement is only marginal. In almost all cases the 

model follows the data and has the correct U-shape. 

195
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Figure 4.12: Experimental results (black dots) and model predictions 
using Rule 1a (solid lines) and Rule 1b (broken lines). Observer KB 
in monocular foveal and 3º viewing conditions. 
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Figure 4.13: Experimental results (black dots) and model predictions 
using Rule 1a (solid lines) and Rule 1b (broken lines). Observer KB 
in foveal (small pictures) and 6º monocular viewing. 
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Figure 4.14: Experimental results (black dots) and model predictions 
using Rule 1a (solid lines) and Rule 1b (broken lines). Observer CAP 
in foveal and 3º monocular viewing. 
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Figure 4.15: Experimental results (black dots) and model predictions 
using Rule 1a (solid lines) and Rule 1b (broken lines). Observer CAP 
in foveal (small pictures) and 6º monocular viewing. 
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There seems to be no qualitative difference in the modelling results between the 

observers. The success of Rule 1a in predicting the shape and in many cases the position 

of the data, is most striking, especially if one considers the simplicity of the hypothesis on 

which it was built. 

Rule 4: 

Figure 4.16 to Figure 4.19 show a comparison between the experimental results and the 

model’s predictions using Rule 4a (solid lines) and Rule 4b (broken lines) for observers 

KB and CAP in all the conditions. As before, when the model did not reach threshold 

within the allowed range (0-100% morph change) its value was made equal to 100%, to 

represent a very high number. Again, there is a substantial improvement in allowing the 

model to adjust to the experimental dataset by means of a free parameter (Rule 4b, broken 

lines). Rule 4a is less compelling than we expected, especially considering that we forced it 

to fit the model at the central point ( α = 0). Some of the predictions of Rule 4a miss 

the data completely and are worse even than the simplest modelling case (Rule 1a). Again, 

there is no significant qualitative difference between observers and the predictions have in 

general the right U-shape. 

∆

There is an argument for choosing the central data point and not others as a determinant 

of the model’s additional parameter for Rule 4a. The central point ( ∆ α = 0) generally 

produces the most consistent result across observers and experimental sets. Rule 4b has a 

truly “free” parameter whose only purpose is to minimise the relative residual sum of 

squares, thus providing the best experimental data fit. There is no question of an 

improvement in the model’s fit between these two variants of rule 4, but we ask here: is 

there an improvement over the simplest version of the model, Rule 1a? 
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Figure 4.16: Experimental results (black dots) and model predictions 
using Rule 4a (solid lines) and Rule 4b (broken lines). Observer KB 
in monocular foveal and 3º viewing conditions. 



 

202

 

 

 

Figure 4.17: Experimental results (black dots) and model predictions 
using Rule 4a (solid lines) and Rule 4b (broken lines). Observer KB 
in foveal (small pictures) and 6º monocular viewing. 
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Figure 4.18: Experimental results (black dots) and model predictions 
using Rule 4a (solid lines) and Rule 4b (broken lines). Observer CAP 
in monocular foveal and 3º viewing conditions. 
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Figure 4.19: Experimental results (black dots) and model predictions 
using Rule 4a (solid lines) and Rule 4b (broken lines). Observer CAP 
in foveal (small pictures) and 6º monocular viewing. 
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4.4. Discussion 

4.4.1. Binocular/foveal data modelling 

Table 10 shows the calculated goodness-of-fit (σ̂ ) for all our foveal modelling results 

(Figure 4.10 and Figure 4.11). σ̂  is the standard deviation of the differences between the 

measured data and the curve generated by the fitted model. It gives an idea of how 

scattered the residuals are around the average. A perfect fit would yield a value equal to 

zero. It was calculated from the error variance as follows: 

pn

WYY
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σ̂  = Error variance. 

Equation 4.16 

2ˆˆ σσ =  = Goodness of fit (GoF). 

Equation 4.17 

Where p is the number of free parameters in the model and n is the number of data 

points. SSER stands for Residual or Error Sum of Squares (relative) as defined in Equation 

4.15. It is the sum of the squares of the differences between the actual data points and the 

predicted values, weighted by the standard error of the ith data point Wi : 
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normalised so that  

 

Equation 4.18 
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For Rule 1a, we considered p (number of free parameters) to be equal to 0. In all other 

cases, it was equal to 1. 

 Goodness of Fit (σ̂ )  

 Rule 1(a) Rule 1(b) Rule 4 (a) Rule 4 (b)

TT         

Woman to Man 0.0689 0.0324 0.0916 0.0895 

Man to Woman 0.0764 0.0475 0.2597 0.0581 

Bull to Car 0.0095 0.0098 0.0234 0.0094 

Car to Bull 0.0108 0.0116 0.0579 0.0361 

CAP      

Woman to Man 0.0564 0.0330 0.1233 0.0400 

Man to Woman 0.0333 0.0246 0.0597 0.0462 

Bull to Car 0.0058 0.0058 0.0164 0.0082 

Car to Bull 0.0442 0.0135 0.0160 0.0140 

Table 10: GoF for all models applied to the foveal/binocular data. 
Rule 1a does not contain any free parameter. Rule 4a corresponds to 
the central-point forced-fit variant. Rule 1b and Rule 4b adjusts the 
free parameter to obtain the best experimental data fit. 

Table 10 shows that the standard error of the estimate is smaller for Rule 1b (average 

value of GoF=0.0182) in 75% of the experiments. The second best fit is (surprisingly) 

provided by Rule 1a, with no free parameters involved (average GoF=0.0256). The 

predictions obtained with Rule 4b were also very close (average GoF=0.0285) and the 

worst modelling rule was definitely Rule 4b (average GoF=0.0682). It is important to note 

that sometimes, the calculation of GoF could produce smaller values for Rule 1a than, for 

example, the optimised Rule 1b because of the inclusion of p (or number of free 

parameters) to calculate GoF after SSER has been minimised. 
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4.4.2. Monocular/foveal/peripheral data modelling 

Table 11 shows the values of GoF considering the model’s fit to the monocular data as 

shown in section 4.3.2 for subject KB. The table reveals that again, Rule 1b provides the 

best fit (50% of the experiments, average GoF= 0.417 ), while Rule 1a and Rule 4b come 

second with 25% of the experiments each. Rule 4a is definitely the worst, against our 

expectations. 

KB GoF (σ̂ ) 

 Rule 1(a) Rule 1(b) Rule 4 (a) Rule 4 (b) 

KB- foveal         

Woman to Man 0.0363 0.0169 0.0557 0.0296 

Man to Woman 0.0959 0.0287 0.1913 0.0513 

Bull to Car 0.0068 0.0069 0.0130 0.0121 

Car to Bull 0.0315 0.0322 0.1221 0.0378 

KB- 3 deg          

Woman to Man 0.0427 0.0485 0.0938 0.0710 

Man to Woman 0.0789 0.0769 0.1306 0.0709 

Bull to Car 0.0597 0.0163 0.0242 0.0193 

Car to Bull 0.0473 0.0504 0.2363 0.0421 

KB- foveal-small         

Woman to Man 0.0952 0.0255 0.0503 0.0351 

Man to Woman 0.1077 0.1144 0.3366 0.0776 

Bull to Car 0.0174 0.0060 0.0081 0.0121 

Car to Bull 0.2355 0.0497 0.0748 0.0286 

KB- 6 deg          

Woman to Man 0.0692 0.0767 0.2690 0.1071 

Man to Woman 0.0653 0.0393 0.1997 0.0659 

Bull to Car 0.0862 0.0536 0.3882 0.0817 

Car to Bull 0.0246 0.0258 0.0162 0.0158 

Table 11: GoF for observer KB. All models were applied to the 
monocular/foveal/peripheral data. Rule 1a does not contain any free 
parameter. Rule 4a corresponds to the central-point forced-fit 
variant. Rule 1b and Rule 4b adjusts the free parameter to obtain the 
best experimental data fit. 
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Table 12 shows the equivalent data for observer CAP. It shows the same trend regarding 

the GoF of the model to the data as before. Rule 1b is the best in 56% of the experiments 

(average GoF=0.040), followed by Rule 4b (31% of the cases, average GoF= 0.06). Again, 

Rule 1a does a good job at predicting the results, considering the lack of free parameters 

(12.5% of the cases, average GoF= 0.07). 

CAP GoF (σ̂ )  

 Rule 1(a) Rule 1(b) Rule 4 (a) Rule 4 (b)

CAP- foveal         

Woman to Man 0.0387 0.0207 0.0712 0.0338 

Man to Woman 0.0416 0.0405 0.1461 0.0697 

Bull to Car 0.0085 0.0081 0.1224 0.1147 

Car to Bull 0.0154 0.0099 0.1795 0.1093 

CAP- 3 deg          

Woman to Man 0.0843 0.0757 0.0276 0.0183 

Man to Woman 0.2010 0.0519 0.0261 0.0172 

Bull to Car 0.0362 0.0271 0.0774 0.0399 

Car to Bull 0.0759 0.0361 0.1577 0.1682 

CAP- foveal-small         

Woman to Man 0.0956 0.0379 0.0421 0.0407 

Man to Woman 0.0891 0.0572 0.0856 0.0532 

Bull to Car 0.0873 0.0854 0.0697 0.0320 

Car to Bull 0.0237 0.0239 0.0826 0.0508 

CAP- 6 deg          

Woman to Man 0.0849 0.0688 0.1710 0.1129 

Man to Woman 0.0762 0.0461 0.0401 0.0361 

Bull to Car 0.0480 0.0316 0.2662 0.0394 

Car to Bull 0.0982 0.0230 0.1837 0.0450 

Table 12: GoF for observer CAP. All models were applied to the 
monocular/foveal/peripheral data. Rule 1a does not contain any free 
parameter. Rule 4a corresponds to the central-point forced-fit 
variant. Rule 1b and Rule 4b adjusts the free parameter to obtain the 
best experimental data fit. 
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4.4.3. Does the addition of  a degree of  freedom and interaction among channels 

offer any significant improvements to the data modelling? 

Our results show that, predictably, adding a free parameter improves the ‘goodness of fit’ 

of the model in both Rule 1 and Rule 4 cases. Is this improvement significant? A simple 

analysis (see Figure 4.20) of the average value of GoF across all observers and conditions 

tells us that in most cases, there is a significant improvement in the modelling when we 

add a free parameter (see darker bars in the same figure). In all but one case (man-to-

woman), Rule 1a is as good as Rule 4b (error bars in the graph represent the standard 

error of the average, with n=10). Rule 4a produces always the largest values of GoF. 

 

Figure 4.20: Average value of the standard errors of the estimate (or 
goodness of fit) across all observers and viewing conditions. Error 
bars represent the standard errors of the average. n=10. 

From the same figure, it is possible to see that Rule 1 predictions are consistently better 

than Rule 4. This makes a strong case against the addition of interaction between channels 
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to our simple model. In practice it means that the simplest ‘winner takes all’ rule performs 

consistently better than the equivalent ‘receptors and channels interactions’ hypothesis. 

4.4.4. Why is the simplest version best? 

Perhaps Rule 4a is worse than Rule 1a because of inadequate choices of the modelling 

parameters. For example, the arbitrary value chosen for the discrimination threshold (or 

magic number) may have a determining influence on the model’s poor predictions. There 

might be the case that choosing other values for this threshold (different to the central 

point of the experimental results) improves the model’s results. An argument against this 

view is that choosing the best possible threshold value (i.e. Rule 4b) does not improve the 

best modelling results. 

Another view suggests that the model may need to be calibrated properly. One way of 

doing so would be to create a pair of gratings that are by definition just discriminable (e.g. of 

contrasts Ct and Ct+ ∆ Ct) and adjust the model so that all the points produced within a 

given channel are distributed equally above and below the dipper function. This is the 

approach taken by Rohaly et al (Rohaly et al. 1997) when they arbitrarily calibrated their 

models to predict contrast thresholds for grating patches in each of the SF-band pass 

channels. This calibration has to be done for all the SF-channels and for each of the 

Minkowski summation exponents considered. 

4.4.5. Altering the model’s assumptions 

Arguably, making our model more sophisticated by calibrating each SF-channel to predict 

the observer’s performance is likely to improve the model’s predictions, but at the cost of 

adding another level of complexity. Our approach up to here has been very simple and 

has produced a good set of predictions. We believe there are other factors that may be 
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also considered if we want to truly understand the workings of the model, like the role of 

each of the assumptions based on physiological/psychophysical evidence. For example, 

what effect would channel bandwidths other than the physiologically measured 1.5 

octaves (Blakemore and Campbell 1969; De Valois et al. 1982a; Movshon et al. 1978a; 

Tolhurst and Thompson 1981) have in our model? Our idea at this point is to investigate 

why is this simple model so robust and what are the main features of the model 

responsible for predicting our discrimination thresholds. We hope that exploring the 

consequences of changing some of the model parameters may help us draw some 

conclusions about the ways in which the HVS might operate. 

Different filter bandwidths: 

The top part of Figure 4.21 shows how the discrimination thresholds change when the 

spatial frequency bandwidth of the nine filters is increased or decreased in Rule 1a (0.5, 

1.0, 1.5, 1.9, and 2.3 octaves). The morph sequence considered was woman-to-man and 

the observer was CAP (see Figure 4.10). All other values (shape of the CSF, shape of the 

dipper template, overall sensitivity, etc.) remain unchanged. The discrimination thresholds 

predicted by the model do not experience large changes for bandwidths smaller than 1.5 

octaves. At this point, predictions start to diverge from measurements. The shape of the 

curve predicted by the model becomes more “tuned” and the lowest point shifts upwards 

and to the right side of the plot. These results are qualitatively similar to discrimination 

threshold results measured for 6º peripheral vision (Figure 3.14). This similarity may be 

related to changes in bandwidth of SF-channels in peripheral vision. The bottom part of 

the figure shows the same type of comparison in the rather extreme case when only one 

broadband channel was considered. Here, the model failed to produce the characteristic 

U-shaped curve. 
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Figure 4.21: Different filter bandwidths. Top part shows the model’s 
predictions when the filter bandwidths are modified to values 
different from 1.5 octaves (dark solid line). Bottom part shows the 
same for a single broadband channel. The morph sequence 
considered was woman-to-man for observer CAP. Corresponding 
experimental results are also shown (black dots). Rule 1a considered. 

Different dipper template shapes: 

The top part of Figure 4.22 shows a similar kind of plot as before, but in this case, the 

shape of the dipper template was modified to reflect five different shapes (named 
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“biological”, “Weber”, “no-dip” and “simple”). These are shown at the bottom part of 

the figure. 

 

Figure 4.22: Different dipper template shapes. Top part shows the 
model’s predictions when the dipper template is modified as shown 
in the bottom part of the figure. The morph sequence considered 
was woman-to-man for observer CAP. Corresponding experimental 
results are also shown (black dots). Rule 1a considered. 

The first or “biologically plausible” one (see also Figure 4.1) is the familiar dipper function 

proposed by Legge and Foley (Legge 1981; Legge and Foley 1980; Nachmias and 

Sansbury 1974) and used in all our previous modelling. The second one has a dip but its 
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positive slope has been adjusted to follow Weber’s law. The third one is a simplified 

version of the “biological” dipper where the “dip” has been eliminated and the fourth 

follows a simple function (a line in log-log coordinates) where the dip has also been 

eliminated. The fifth option (“flat” -not shown in the figure) is just a line where contrast 

difference is equal to 1 for all reference contrast values. As before, all other values 

(bandwidth, overall sensitivity, etc.) remain unchanged and the model rule used is Rule 1a. 

Figure 4.22 also shows that for some of the dipper templates considered, the model’s 

predictions do not get dramatically worse. The largest worsening effect is produced by the 

“simple” and the “Weber” version of the dipper. Surprisingly, the “flat” dipper does not 

make the model fail but quite the opposite. The reason for this may be that the flattening 

of the dipper function effectively lowers the contrast difference necessary for each 

receptor to signal and makes this value the same independently of the reference contrast. 

An organism with such contrast detection mechanism will always be able to detect the 

same changes in local contrast independently of the reference contrast, and is expected to 

have smaller morph discrimination thresholds than our average observer. The fact that 

their discrimination thresholds are similar to those measured psychophysically may show 

the need for some kind of calibration of our model algorithm. 

Different CSF shape – influence of a shallower CSF: 

The shape of the corresponding CSF (for observer CAP, see Chapter 2 on binocular data) 

was altered so that sensitivity for high spatial frequencies improves. Figure 4.23 shows 

what happens to the model’s predictions when this occurs. The bottom part of the figure 

shows four different CSFs, which were produced by multiplying the curve 2, 3.3 and 10 

times so that it looks more and more flat, increasing the observer’s sensitivity to high 

spatial frequencies only. 
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Predictably, this produced lower thresholds for the images that have a higher content of 

detail (negative values of ∆ α), keeping the threshold for the other sequences unmodified. 

All other values (bandwidth, dipper, overall sensitivity, etc.) remain unchanged and the 

model rule used is Rule 1a. 

 

Figure 4.23: Influence of a shallower CSF. Top part shows the 
model’s predictions when the shape of the CSF function is altered as 
shown in the bottom part of the figure. The morph sequence 
considered was woman-to-man for observer CAP. Corresponding 
experimental results are also shown (black dots). Rule 1a considered. 
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Different overall contrast sensitivity: 

The overall value of the CSF was increased or decreased, to test the effects having 

different observers in our model. This was achieved by multiplying the observer’s CSF 

data by 3 , 3 and 1/3. 

 

 

Figure 4.24: Different overall contrast sensitivity. Influence of a 
change in the overall CSF. Top part shows the model’s predictions 
when the overall CSF function is multiplied by a parameter as shown 
in the bottom part of the figure. The morph sequence considered 
was woman-to-man for observer CAP. Corresponding experimental 
results are also shown (black dots). Rule 1a considered. 
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The top part of Figure 4.24 shows the effects of increasing or decreasing the overall CSF 

on the model’s results, which is similar to altering the discrimination threshold value19 in 

Section 4.2.5. In fact, the addition of a free parameter in Rule 1b was equivalent to finding 

the best multiplicative coefficient for the CSF so that our model fits optimally the 

experimental data. Here we can examine in more detail the effects of altering the overall 

CSF in our modelling. 

From the figure, we can see that an increase in the observer’s overall sensitivity produces 

lower thresholds in general, but for large values of the multiplicative coefficient, model 

predictions are too low in the left side of the graph. While the model improves its 

predictions on right side of the plot, it does poorly on the left side. This may indicate a 

balance where our simplest model is not far from the optimal point. 

4.4.6. Future directions 

Our attempt to model our previous psychophysical results has been an interesting and 

engaging exercise. We have been able to reasonably predict psychophysically measured 

results using extremely simplified versions of low-level visual mechanisms. These 

mechanisms include the output from “receptors” and “SF-channels”, and the building of 

a multi-resolution image representation. This image representation is then compared to 

others before a decision is made to whether the images are similar or not. The only input 

from the human observer in this model is the characteristics of its CSF. Some important 

properties of the stimuli such as its Fourier orientation or phase spectrum were 

deliberately ignored. The rules that govern the model’s decision have also varied from low 

 
19 Increasing the overall CSF produces a change in the position of the dipper function and therefore it 

modifies the difference between the predicted contrast difference and the dipper (see ). All 
this amounts to a vertical shift in the discrimination threshold curve, in the same way as adding a free 
parameter does. 

Equation 4.8
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levels of complexity to more elaborated ones. All our results indicate that a task such as 

local contrast discrimination can be performed robustly by the simplest set of decision 

rules. In fact, increasing the complexity of the model does not yield a clear improvement 

of these results. All this points to the lack of critical involvement of “higher” cortical 

functions. 

The fact that the model seems to works even when any of its basic assumptions (channels 

bandwidths, CSF or dipper shape, etc.) is altered implies a degree of robustness in the 

interactions between the system and its parts: the whole system seems to be able to carry 

on doing its work despite these changes. 

However, the predictions show that there is room for improvement of the model. This 

might be done by including some mechanisms that were not explored here: for example, 

we need to investigate the effects of calibrating each of the channels combined in Rule 4 

as mentioned in Section 4.4.4. We may also contemplate the effects of splitting the SF-

channels according to spatial orientation. Another improvement would be to make the 

model independent of the observer by considering a CSF that is the result of many 

contrast sensitivity measurements (e.g. Barten’s CSF formula) (Barten 1993). 

A more complex model should also account for lateral interactions among channels 

(Foley 1994). This approach assumes that the contrast gain of one channel can be reduced 

by activity from the others. Rohaly et al (Rohaly et al. 1997) added a single overall contrast 

gain mechanism and found this assumption to be very important compared to others. M. 

Chirimuuta and D.J. Tolhurst (personal communication) have tried to model the effects 

of non-specific suppression. They found that masking of one channel by others might 

result in a flattening of the dipper function. As shown before (in Figure 4.22), the 

flattening of the dipper function did improve our model’s predictions slightly. 
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Our model has also been successfully tested in a different task (detection of objects on a 

background) and it is capable of predicting object visibility on synthetically produced 

“natural backgrounds”. This is to be explored in more detail in the future. 

A future expansion of the model contemplates the prediction of discrimination thresholds 

in colour morph pictures and the modelling of avian vision. 

4.5. Conclusions 

a) Our simple model, in its two variations (or Rules) is capable of predicting 

the thresholds for discriminating between slightly different pictures from a 

morph sequence. The model also predicts optimal performance for natural 

slopes of the amplitude spectra. These predictions agree with 

psychophysical results. 

b) The simplest version of the model (Rule 1a, ‘winner takes all’) performs 

significantly better than the other, more complex version (Rule 4a, with 

inter-receptor and inter-channel masking effects) suggesting that our morph 

discrimination task can be accomplished by the HVS using only simple low-

level mechanisms. The addition of a degree of freedom to our simplest rule 

(Rule 1b) produces a significant improvement in the model’s predictions, 

suggesting that there might be other mechanisms not taken into account 

here. 

c) To gain a better understanding of the workings of the model we explored 

situations in which its parameters differed markedly from those assumed to 

be true for the normal (foveal, band-pass channel-based) models of vision. 
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Our results suggest that the robustness of our model might be the result of 

a combination of factors rather than the product of any single feature. No 

single characteristic of the model (filter bandwidths, shape of the contrast 

discrimination function, shape of the CSF function, etc.) could account by 

itself for the model's predictions. These results suggest a robust interaction 

among several aspects of spatial vision and the relevant properties of natural 

scenes. 



 

Chapter 5.  
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C h a p t e r  5  

SPATIO-CHROMATIC PROPERTIES OF NATURAL IMAGES AND 
THEIR RELATIONSHIP TO HUMAN CONTRAST SENSITIVITY 

Is there an optimisation? 

5.1. Overview 

So far, our work has explored the HVS’s optimisation for encoding the spatial statistics of 

natural scenes in terms of luminance. However, we are also capable of encoding 

information in the wavelength domain by means of three different wavelength-sensitive 

receptors called cones; thus, we see the world in colour. In this chapter we extend our 

research into some of the colour properties of natural scenes, considering their relationship 

to the spatial filtering the HVS performs on this information, trying to find which of these 

properties may have had a greater role in shaping the way colour vision works. 

It is well known that the HVS shows a relatively greater response to low spatial 

frequencies of chromatic spatial modulation than of luminance spatial modulation (Mullen 

1985). Figure 1.17 (in Chapter 1) shows this imbalance. However, previous work (Brelstaff 

and Troscianko 1992; Párraga et al. 1998a; Webster and Mollon 1997) (see Figure 5.1) has 

shown that this differential sensitivity to low-SFs is not reflected in any differential 

luminance and chromatic content of general natural scenes. In one of these earlier studies 

(Párraga et al. 1998a), the spatio-chromatic properties of 29 natural scenes were analysed, 

but they mostly consisted of views of foliage and gardens. 
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These results are contrary to the prevailing assumption that the spatial properties of 

human vision ought to reflect general structure of natural scenes (Atick 1992; Barlow 

1961, 2001; Field 1987, 1994; Laughlin 1981; Srinivasan et al. 1982; Van Hateren 1992b). 

Essentially, a match between the scene content and the visual system’s response 

maximises the signal-to-noise ratio of the neural representation. That is, since HVS 

prefers low chromatic spatial frequencies, we would have expected natural scenes to be 

dominated by lower chromatic SFs than luminance SFs. They are not. However, these 

results may reflect the unsuitability of general natural scenes databases as the basis of such 

analysis, since no particular visual task for HVS was considered. As discussed in the 

introductory chapter, we would like to take a different approach here, considering that 

some of the strongest evidence for an optimisation between the visual world and the 

colour properties of the HVS does not come from analysis of general scenes but from 

colorimetric measures of a specific type of scenes. These suggest that red-green (and 

perhaps blue-yellow) colour discrimination in primates is particularly suited to the 

encoding of specific objects: reddish or yellowish objects (such as fruit or edible leaves) on 

a background of leaves (Dominy and Lucas 2001; Osorio and Vorobyev 1996; Regan et al. 

1998; Sumner and Mollon 2000a). We therefore ask whether the spatial, as well as 

chromatic, properties of such fruit scenes are matched to the different spatial encoding 

properties of colour and luminance modulation in human vision. Given that general 

scenes are not matched, perhaps this special class of ecologically-relevant visual scenes is 

matched. 
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Figure 5.1: Fourier amplitude averaged across orientation for the 
luminance and chromatic component. The results show the average 
values for a dataset of 29 hyper-spectral natural images (Párraga et al. 
1998a). 

5.2. Methods 

In order to extend our analysis of the spatial properties of natural scenes to the chromatic 

domain, we produced a colour database of natural scenes. To do this, a portable digital 

camera (Nikon Coolpix 950) was calibrated to have a linear response in its R, G and B 

primaries. The camera primaries were then transformed into three human cone primaries 

using an approximate transformation. Separate luminance and chrominance planes where 

it is possible to analyse the Fourier content were obtained. The calibration of the digital 

camera is not straightforward and will be discussed in the next section. 

5.2.1. The Nikon Coolpix 950 colour digital camera specifications 

Figure 5.2 portrays the Nikon Coolpix 950 digital camera. It has two recording modes: 

automatic (A-REC) and custom (M-REC which allows manual adjustments to focus, 

shutter speed, aperture, sensitivity, white balance, metering, brightness and contrast). We 
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used the M-REC mode, so that we had full control of the images. The camera’s high-

density image sensor (½ ” CCD) has an effective pixel count of 1.92 million pixels (1,600 

x 1,200 pixels). The camera supports several image sizes: 1,600 x 1,200 (full), 1,024 x 768 

(XGA), and 640 x 480 pixels (VGA). The camera’s lens is a X3 zoom Nikkor aspherical 

glass lens (38 mm – 115 mm), F2.6 – F4.0. Its focal length ranges from 30cm –– ∞. It has 

2 focus modes: auto focus and manual (ten steps from 10cm –– ∞). The shutter is a 

combined mechanical and charge-coupled electronic shutter and its speed range is 8 sec – 

1/750 sec. The aperture is electro-magnetically controlled. The camera’s sensitivity is ISO 

80 equivalent. It is possible to choose among three exposure-metering modes: 256-

element matrix, centre-weighted and spot. 

 

Figure 5.2: The Nikon 950 camera used in this research. 

The camera also provides several automatic white balance programs for sunny and 

overcast conditions and for incandescent, fluorescent, and flash lighting. It has a self-timer 

(3 sec./10 sec.). The pictures are stored on a removable CompactFlash memory card (8 – 

128 Mb) and the format could be chosen between JPEG and tagged-image format (TIFF- 

EXIF 2.0). We used uncompressed TIFF, since JPEG compression introduces spatial and 
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chromatic artefacts into the image. Video output was available to monitor the images in 

either NTSC or PAL external TV screens. 

5.2.2. Default camera setup  

We considered several parameters before taking a picture with the Nikon Coolpix camera. 

For example, in a fully automatic mode, the camera has a built-in algorithm that measures 

the exposure value (EV) in the central area of the picture frame. After this, the algorithm 

determines the diameter of the aperture opening (aperture) and shutter speed (expressed 

in terms of the integration time or IT) so that the amount of light captured fits within the 

dynamic range of the CCD sensor in the measuring area, ignoring the rest. In our case, we 

decided to avoid possible artefacts introduced by changes to the depth of field, focal 

length, etc. by keeping all optical parameters the same. In addition, the CCD sensitivity 

was fixed, so that the camera’s built-in algorithm could only determine the best integration 

time. Since our choice of subject for the images did not include a strong presence of sky 

or very bright surfaces, the chances of having large saturated portions of the image were 

very low. The choice of “spot metering” settings allowed us to best fit the dynamic range 

of the CCD sensor to “interesting” parts of the image such as shady areas, vegetation, 

letting extremely bright portions (which were not very common) saturate. 

Having in mind the most common situations that we might encounter in the natural 

world and in the laboratory, we choose three white balance settings to calibrate. These 

settings were: Sunny, Cloudy and Incandescent. All other conditions/settings were kept the 

same throughout the calibration and collection of the data (except stated otherwise). 

These were: 
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a) Metering type: Spot, which takes into consideration only the central portion of the 

picture, shown in the LCD monitor. This central portion has rectangular shape 

and occupies about 5% of the LCD screen. 

b) Image Adjustment: 0. This setting does not change the brightness and contrast to 

digitally “enhance” pictures. 

c) Image quality: Hi. The camera does not use any kind of image compression and 

gathers uncompressed TIFF pictures of 5.5 Mb in size each. 

d) Sensitivity: Default. The camera’s sensitivity is roughly equivalent to an ISO 80 

film. 

e) Exposure: Aperture priority. The aperture is set to a fixed value (usually F11.4, 

which maximises the camera’s depth of field, allowing most of the scene to be in 

focus) and the camera manipulates the shutter speed to fit the image within its 

dynamic range. 

f) Zoom: 115 mm.We usually took pictures using the telephoto lens’ maximum value, 

which allows the camera (hardware, tripod etc.) to be far from the photographed 

objects, minimising interactions, such as reflections, shadows, etc. 

g) Timer: Always On (10 seconds) 

In addition, we checked that the image adjustment setting did not produce any kind of 

automatic contrast enhancement or normalisation. We took two pictures of a standard 

Kodak grey card. In the first picture, the card was on a white background and in the 

second, it was on a black background. We checked that the RGB values for the card were 
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the same in both cases. All images where captured while the camera was mounted on a 

fixed tripod. 

5.2.3. Camera calibration (Overview) 

To be able to gather images of the natural world and convert them to L, M and S cone 

primaries we need first to know the physical (electro-optical) properties of the Nikon 950 

digital camera. To do this we proceeded to photograph objects, measure the physical 

properties of the light reflected from these objects, and compare the digital output of the 

camera with these properties (calibration). The measurements of spectral radiance were 

made using a spectroradiometer (Topcon Model SR1, calibrated by the National Physical 

Laboratory). This instrument was capable of measuring spectral radiance within the 380-

760 nm wavelength range using a photomultipler tube as a photo-detector and a 

diffraction grating as dispersive element. Its measuring field could be selected manually to 

be 0.2 or 2º. Its viewing field was 5º and its sampling interval could be selected from 1, 5 

or 10 nm in equal intervals. The spectroradiometer (SR) lens system’s measuring distance 

was 400 mm–– ∞ from the focal point (F4, f= 80 mm). Its calibration report (National 

Physical Laboratory report QMS112) states that ‘the measured radiance values at all wavelengths 

and all luminance levels applied to the instrument are within the 4% limits as specified by the instruction 

manual’. The instrument provides both physical and photometric measures: spectral 

radiance, radiance, luminance, tristimulus values (X, Y, Z), chromaticity coordinates (x, y) 

(u’, v’), colour temperature, etc. It was connected to a PC using a GP-IB interface and the 

warm up time was approximately 60 min. A custom program was written in Delphi 3 to 

control this instrument from a Windows NT platform. Constant illumination was 

provided by a stabilised DC power supply (Type SP020 - Vinculum Products LTD, 

Royston, Herts, 0-50V, 0-20Amps) accurate to 30 parts per million in current according to 
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the manufacturer’s specifications and a tungsten-halogen lamp (Osram HLX 64657FGX- 

24V, 250W) with fixed 10 Amps current. This was necessary to avoid variations in the 

light source produced by fluctuations of the mains during our measurements. 

Figure 5.3 shows the schematics of our camera calibration. Its starting point is the 

estimation (later confirmed by accurate measurements) of the sensor’s response linearity 

with large changes in light intensity. This response is defined by the IT values and RGB 

values registered by the camera when light intensity is increased a few orders of 

magnitude. 

 

Figure 5.3: Schematic of the 6 basic steps taken to calibrate the 
Nikon camera used in this work. 

The second stage corresponds to an estimation of the sensor’s sensitivity to light intensity 

variations within the same picture (same IT value) and is detailed in Section 5.2.5. The 
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third stage is the estimation of the sensor’s spectral (colour) sensitivity using a set of 

monochromatic narrowband filters spanning over the visible spectrum (see Section 5.2.6). 

Once we have estimated the sensors’ sensitivities both to light intensity changes and 

chromatic changes we can draft the shape of each of the sensor’s spectral sensitivity 

functions. The basic problem with these measurements is that they are obtained using 

light that is not spectrally flat (incandescent light contains more energy in the “reddish” 

side of the spectrum than in the “bluish” side). Our next step is to calculate the amount of 

distortion introduced by the spectrally uneven light source and correct our measurements 

taking into account these variations. This is done by using the spectral sensitivity functions 

estimated in the previous step and the light source’s spectral sensitivity plus some 

assumptions detailed in Section 5.2.6. Once the distortions introduced by the light source 

are calculated, both the luminance and spectral sensitivities of the camera’s sensors are 

recalculated. The linear dependence of camera’s IT with light intensity is also confirmed 

(Section 5.2.7) using these corrected values. Each of the steps mentioned above had its 

own difficulties derived from either the camera’s own limitations or restrictions due to the 

method employed. The following sections explain how these were dealt in detail. 

5.2.4. Estimation of  the linearity of  the sensor’s IT response when exposed to 

large changes in luminance. 

When a picture is taken, the camera’s RGB sensors are active for a certain amount of time 

(called IT) enough to register a measure of the luminous energy falling on them before 

sending this information to the camera’s processor unit. Since each sensor has a limited 

dynamic range, an algorithm estimates (in a short time before the picture is taken) the 

amount of IT necessary so that the luminous energy is large enough to be registered and 

does not saturate the sensor. These calculations are usually done based on the properties 
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of the G (green) camera sensor. According to this, if the camera is exposed to two 

different amounts of light energy, one very small and the other large, the sensor may 

register the same set of RGB values, but different IT. 

 To be able to calibrate our camera, we first need to have some certainty that this IT value 

changes linearly with light intensity (in our case, a convenient measure of this intensity is 

luminance). Since we have yet to estimate the response of the sensor’s RGB values to 

changes of light intensity present in the same picture, we can only aim at having a rough 

estimation of the linearity of the sensor’s response to large changes of luminance. 

If we want to compare the values of RGB obtained from the camera across different 

lighting conditions, we need to divide the by the corresponding IT. A preliminary 

estimation of the relationship between these “corrected” RGB values and luminance was 

obtained as follows: 

a) A measurement of the light reflected from the central part of the target was taken 

using the SR. Neutral density (ND) filters of values 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 

3.5 log units were added in front of the SR lens and new measurements were 

taken to calibrate the ND filters. 

b) The SR was removed and the Nikon camera was set up on a fixed tripod sharply 

focused at the target. The distance between the camera and the target was 

200mm. A picture was taken without a filter and through each of the ND filters. 

The first picture (without filter) was repeated at the end to check whether any of 

the conditions had changed during the session. This was repeated three times 

(once for each white balance). 
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c) All 27 pictures were downloaded to a PC. A custom made program (written in 

Matlab v.5.0) calculated the values of the central square (50x50 pixels) of all 

pictures. The values of R G and B within each of these squares were averaged. 

Typical values of SD were between 1.4 and 4% (R and G sensors) and between 

3.8 and 6% (B sensor). The worst single case was the B sensor with the 3.5 ND 

filter (17% SD). The integration time corresponding to each of the pictures was 

obtained from the picture’s header. 

d) From the SR readings, we obtained the values of luminance in all the conditions 

(ND= 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5). 

e)  Camera values far from the middle of the camera’s dynamic range (0-255 

greylevels) were not considered in this preliminary measure. “Normalised RGB 

values” were obtained (by dividing the original RGB values on the corresponding 

IT) and the relationship between the camera’s output and the SR measurements 

was plotted. 

From these preliminary measures, we concluded that there is an approximate linear 

relationship between the camera’s IT values and luminance, but this needs to be 

confirmed later using all the data points (see Section 5.2.7). 

5.2.5. Calibration of  the intensity levels of  the R, G, and B sensors (Gamma 

correction) 

In a picture taken with our camera, each pixel value (triplets of RGB values) is related to 

the local distribution of light intensity at the corresponding point in the real world. In an 

ideal situation, the function relating these values would be linear. In practice, this function 
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a) 

is found to be non-linear and the form of this relationship is unknown to us. To measure 

this relationship we did the following: 

We used a ColorChecker colour rendition chart (Macbeth chart – Kollmorgen 

Instruments Corporation) as target for both the SR and the camera. The lower 

part of the chart has six squares (labelled white, light-grey, medium grey, etc.), 

which have the same CIE x,y coordinates but different reflectance values (i.e. 

when illuminated by the same light source, they reflect light with the same 

wavelength composition but different intensity and luminance (Y) values). The 

chart was illuminated by incandescent light from a modified slide projector, 

supplied by constant current. The SR was pointed to the central part of each of 

the six grey squares of the chart to measure Y and xy for each square. Three 

pictures of the colour chart were taken (one for each of the white balances tested: 

incandescent, sunny and cloudy) and processed separately. Figure 2.4 shows the 

schematics of the measurement. 

 

Figure 5.4: Disposition of the instruments for the Nikon 950 Gamma 
correction. The distances between the chart and the light source, SR 
and camera are 115 cm, 122 cm and 123.5 cm respectively. Indirect 
lighting from the projector to the camera or the SR was reduced 
using black cardboard screens. 
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b) 

c) 

From the camera pictures, (1600 x 1200 pixels) the six grey squares were cut out. 

The central part (10 x 10 pixels) of these grey squares was cropped out and the 

values of R, G and B averaged within these (their corresponding standard 

deviation was also calculated). The size of these (10 x 10 pixels) squares 

corresponds approximately to the size of the SR measurement spot. Typical values 

of STD were below 5% for RGB values larger than 50 greylevels and increased to 

about 8% for values below 50 greylevels. 

The average values for each (10 x 10 pixels) square in each of the R, G and B 

image planes obtained were plotted against luminance (measured by the SR). The 

result was a set of three functions (one for each camera sensor) in each of the 

three white balance conditions (see Figure 5.5). We were able to find a single family 

of curves that fitted to the measured data in all cases: 

SbaL .=  

Equation 5.1 

where L is luminance; S is the grey level value obtained for each of the camera sensors b is 

a constant and a is the parameter that determines the family of curves. The functional 

relationship between dependent and independent variables (L as a function of S instead of 

the most usual S as a function of L) was decided based on convenience (it is easier to fit). 

The value of b was found to be equal to 1.015 for all conditions (Sunny, Incandescent and 

Cloudy) and all sensors (RGB) and the value of a was found to be the same (a= 11.26 ) 

for the G sensor regardless of the white balance employed. In summary, each of the 9 

different curves of the family represented by Equation 5.1 is defined by only one 

parameter (a) and this parameter (or gain factor) is used by the camera’s manufacturer to 

weight the output of the R and B sensors to compensate for the different lighting 



 

236

conditions. Figure 5.5 shows the plots of the nine curves corresponding to these 

(preliminary) measurements. 

 

Figure 5.5: Plots of Luminance (as measured on the Macbeth chart 
by the SR) against the R,G, and B values produced by the camera.  
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Given that the curves represent each sensor’s output against a measure of light energy 

(luminance) obtained around the central part of the visual spectrum (corresponding to the 

CIE luminous efficiency, V( λ )) using a light source that was not spectrally flat, they need 

to be corrected so that the energy stimulating all three (RGB) sensors is the same. 

To be able to obtain the gain factors corresponding to the R and B sensors we need to 

estimate the ratio between the amounts of light captured by each of the sensors across the 

colour spectrum (sensor’s spectral sensitivity) and the spectral properties of the 

incandescent light that we were using. 

5.2.6. Estimation of  the Nikon camera’s sensor spectral sensitivity 

After the preliminary measurements of section 5.2.5, we established the basic structure 

and functioning of the Nikon camera’s RGB sensors as a function of light intensity. This 

can be summarised as follows: 

The camera possesses three types of sensor (R, G and B), which have different spectral 

sensitivities but share the same sensitivity to increments of light energy (as described by 

Equation 5.1). The sensitivity of these sensors are modified according to parameter a in 

Equation 5.1. This parameter changes the sensor’s sensitivity curve to produce curves R 

and B in all “manufacturer-defined” white balance conditions. 

Knowing the above, we can now proceed to measure the R, G and B sensors sensitivity to 

wavelength changes (spectral sensitivity) assuming that all sensors behave basically in the 

same way (they share the same G sensitivity plots in Figure 5.4) before their output is 

modified by gain factor a. 
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To measure the Nikon camera’s sensors spectral sensitivity we used a “target” which 

consisted of a black box with two holes (see Figure 5.6). The internal part of the black box 

was covered in black velvet. Opposite the front hole, there was a circular target, which 

consisted of Cyanoacrylate adhesive powder (Kodak-Eastman “standard white” with 99% 

reflectance throughout the visible spectrum). This substance produces a Lambertian 

(diffuse) pattern of reflected light and has approximately constant reflectance across the 

visible spectrum (i.e. “white” object). 

 

Figure 5.6: Scheme of the box containing the target that we used for 
our calibrations. The actual target consisted of Cyanoacrylate which 
has a fairly constant reflectance (0.989 to 0.992) in the range 400 to 
700 nm. 

The target was illuminated by the constant-current (10 Amps) incandescent light source, 

and the light reflected by the (white) target was measured using the SR. Indirect lighting 

from the projector to the camera or the SR was reduced using black cardboard screens. 

The arrangement of all elements is shown in Figure 5.7. 
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Figure 5.7: Positions of the elements including light source and 
spectroradiometer to measure the light reflected by the white target. 

All dimensions were determined by the physical size of the laboratory equipment and by 

the minimum distance that the SR lenses were capable of focusing. 

The Nikon Camera’s spectral sensitivity within the visible spectrum (400-700 nm) was 

measured using a set of 31 colour filters (each of 10 nm bandwidth - Ealing Electro-

Optics, Watford) spanning from 400 to 700 nm and with peaks at 10 nm intervals. The 

procedure was as follows: 

a) The white target was set and illuminated with a constant-light incandescent 

source as shown in Figure 5.7. A measurement was also made of the central part 

of the target using the SR at 1 and 10 nm intervals. The stability of the light 

source and the SR were tested by measuring light from the white target on 

different times and different days. 
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Figure 5.8: Spectral radiance of the 31 filters and the incandescent 
light source (broken curve at the top). 

b) One by one, the filters were added in front of the SR lens and measurements 

were taken. From the 1nm-interval SR data, it was possible to reconstruct the 

transmitted radiance of the filters and their transmittance. Figure 5.8 shows the 

radiance measured through each of the filters and the incandescent light source 

(light reflected from the white target). Spectral transmittance was calculated by 

dividing the spectral radiance for each filter by the spectral radiance of the source 

(Figure 5.9) at each wavelength. 

c) A Gaussian curve was fitted (using least-squares method) to the measured 

radiance for each of the filters and their bandwidth and areas calculated. Where 

the filter manufacturer’s data was available, we compared the shapes of the 

transmittance plots (including peak, half-height bandwidth, etc.) to those of the 

fitted Gaussian curve. The agreement was good in all cases. 



 

241

 

Figure 5.9: Spectral transmittance of the 31 colour filters. 

d) A series of pictures of the white target was then taken (replacing the SR with the 

Nikon camera) through the whole set of colour filters. Two control pictures (at 

the beginning and the end of the series) were also taken without using any filter. 

This sequence was repeated three times, each time using a different white balance 

mode (Sunny, Cloudy and Incandescent). 

e) The R, G and B values of the centre of each colour-filtered picture and their IT 

were again extracted. Values of B taken with filters within 400 and 500 nm were 

found to be saturated (the camera’s IT was determined by the dynamic range of 

the G sensor, thus the B grey-level values were to equal to 255). A new set of 

pictures was taken to correct those (see below). 

f) Considering that the relationship between luminance and the values of RGB, is 

stated by Equation 5.1, which is the same for all three colours and white balance 
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conditions (only the gain factor a changes), the RGB values (with and without 

filters) were linearised using Equation 5.1 and divided by the corresponding IT. 

At this point, the gain factor a was considered to be the same for all three RGB 

sensors and equal to the value previously measured from the G sensor plots in 

Figure 5.5. A constant was added to account for the fact that a sensor value of 

“0” should yield a linearised value of “0”. Equation 5.2 show these relationships 

(a= 11.26 and b= 1.015). 
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Equation 5.2 

g)  These are now called “linearised” RGB values. These “linearised” values of RGB 

were then divided by the corresponding area under the radiance curve thus 

obtaining a measurement of the RGB sensors’ sensitivity at the filter’s peak. At 

this point we need to comment on the limitations of this method, since the ideal 

would be to have infinitely narrowband interference filters. Given that our 

interference filters do have transmittance functions of finite spectral bandwidths 

which somewhat overlap one another (see Figure 5.9), each calculated point on 

the sensors spectral sensitivity functions will have some “contamination” of 

energy belonging to neighbouring points. 

h) Given that the values of B obtained by the camera were saturated (equal to 255), 

we had to adopt a different strategy to measure the B sensor’s spectral sensitivity 

within the range 400-500 nm. To avoid saturating the B sensor, we took pictures 
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of the same target in the same conditions, only adding ND filters in front of the 

corresponding colour filter. At this point, the camera tried to increase the IT so 

that the G sensor was within range, but it reached its maximum value (IT= 8 

sec). This allowed us to obtain values within the B sensor’s dynamic range. SR 

measurements were repeated replicating these conditions. 

i) The B sensor’s “spiky” nature was confirmed to be a property of the sensors and 

not due to measurement noise, by repeating the measurements, altering the 

conditions (distance from the light source and target, etc.) in order to reduce the 

amount of noise. 

Figure 5.10 shows the RGB sensor’s spectral sensitivities calculated from values derived 

from Equation 5.2. Each RGB value in the figure was divided by the total spectral 

radiance transmitted by the corresponding interference filter (the area under each 

interference filter’s radiance curve in Figure 5.8). 

 

Figure 5.10: Spectral sensitivity of the Nikon camera’s RGB sensors. 
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Once the spectral properties of the R, G and B sensors are known, it is possible to 

estimate how the use of an incandescent light source has introduced distortions to the 

data displayed in Figure 5.5. From the RGB curves in Figure 5.10 we can see that light 

with spectral distributions such as that shown in Figure 5.8 would have excited more the 

R sensor and less the B sensor, compared to the middle-wavelength sensor. Since our 

measure of light intensity in Figure 5.10 is based on luminance (which favours middle-

wavelength intensity distributions such as that of the G sensor), we need to plot again the 

same data compensating for the non-even spectral energy distribution produced by our 

incandescent light source. 

The correction factors were obtained by multiplying the RGB sensitivities (shown in 

Figure 5.10) by the spectrum of the light reflected from the unfiltered white target (as 

shown in Figure 5.8) and operating as follows: 
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Equation 5.3 

In the previous equation Eλ represents the spectral radiance of the white target and Rλ, 

Gλ, Bλ are the spectral sensitivities described in Figure 5.10. These correction factors were 

used to recalculate the luminance measured previously in Figure 5.5. 
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Figure 5.11: R, G, and B values (obtained from the Nikon camera) 
versus the measured luminance (obtained from the 
spectroradiometer). Exponential fitting curves are also shown for 
each of the sensors. Error bars are smaller than the corresponding 
symbols in this plot. 

Figure 5.11 shows the “corrected” family of curves (produced by multiplying the 

luminance values of the R and B curves by the CR/G and CB/G correction factors 

respectively) corresponding to all the white balance conditions. 
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From the graphs in Figure 5.11 we were able to calculate the gain factors a applied by the 

camera manufacturers to all sensors in all white balance settings. Using this information, 

we can now write Equation 5.2 for all conditions as follows: 

Sunny white balance 

;)1015.1(08.9

;)1015.1(42.11

;)1015.1(10.12

IT
BLinearised

IT
GLinearised

IT
RLinearised

B

G

R

−⋅
=

−⋅
=

−⋅
=

 

Cloudy white balance: 
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Incandescent white balance: 
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The previous equations allow us to “gamma-correct” the sensor’s output and convert 

RGB values into a linear measure of the light intensity stimulating each sensor. 
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In other words, after applying these equations to the camera’s RGB output we are able to 

remove all the manufacturer’s “white-balance” cosmetic enhancements to the image and 

obtain a measure of the light reflected from every small part of the scene into the camera. 

5.2.7. Integration time (IT) linearity calibration 

Our last concern regarding the Nikon camera’s linearity has to do with the relationship 

between the camera’s shutter speed (or IT) and the intensity of the light falling on its 

sensors (R, G and B). Since the aperture settings for the camera are fixed, the camera 

varies its IT to obtain a picture within its dynamic range and stores this IT value in the 

header of the corresponding (TIFF) picture file. The values of RGB obtained have to be 

corrected for this IT if we want to compare them across different lighting conditions. 

Preliminary measures (see Section 5.2.4) showed a linear relationship between IT values 

and luminance but now we can improve these measures by using all the data collected and 

not only points near the middle of the sensor’s dynamic range. The data measured 

previously was re-analysed and Figure 5.12 shows a log-log plot of the relationship obtained 

between the camera’s output and the SR measurements. The ordinate represents the 

values of RGB. These were linearised using Equation 5.1 and converted into “absolute 

RGB values” by dividing them by the corresponding IT. The abscissa represents the 

various values of luminance as measured with the SR through the filters. The log-log plot 

was necessary given the logarithmic nature of the ND filters. The lines on these plots 

represent the fitting in the log-log space. As Table 13 shows, all the slopes are close enough 

to one to assume a linear relationship in the linear space. 
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Figure 5.12: Relationship between luminance (as measured by the SR) 
and the values obtained for each of the RGB sensors (divided by the 
corresponding IT). The lines show the corresponding fittings in log-
log space. Incandescent white balance settings. 

We repeated these measurements on four off-centre squares. We took the central (256 x 

256) part of these large (1600 x 1200) pictures and measured the RGB values on four 

squares (50x50) called north, south, east and west. The average values of RGB within 

these off-centre squares were close to the values of the central part (the difference was 

approx. the same as the STD of the average within each square). 

Slope (α) Cloudy Incandescent Sunny 

R 1.042 1.016 1.045 

G 1.036 0.996 1.044 

B 1.021 0.960 1.038 

Table 13: Slope values for the lines plotted in log-log co-ordinates 
showing the relationship between luminance and the RGB sensor 
value divided by IT, for each white balance setting. A linear 
relationship is indicated by the proximity of the slope to 1. 
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5.2.8. Conversion to the LMS cone sensitivities 

Once the properties of the camera’s sensors were known, we were able to linearise our 

digital pictures to obtain a reasonable measure of the red, green, and blue light captured by 

the camera’s sensors for each of its constituent pixels. Our next step was to transform 

these RGB components into the equivalent amount of light that would be captured by the 

human cones. For this it was necessary to find the matrix that transforms the set of values 

 into the corresponding set [ BGR ,, [ ]SML ,, : 
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Equation 5.5 

Another way of modelling LMS and RGB spectral image acquisition is using matrix-

vector notation. For example, the spectral intensity distribution of the light reaching the 

sensor can be expressed as: 
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3121 ...... eee=E  

where en is the radiance reaching the camera with a wavelength corresponding to the peak 

of each of the 31 filters. The camera’s sensors RGB spectral sensitivity can be expressed 

as vectors, where each component represents the sensitivity of the sensor at the peak of a 

narrowband colour filter: 
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and the same can be done with the LMS sensors: 
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Using this notation, we can write: 
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and Equation 5.4 can be rewritten as: 
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Where finally we can remove the intensity distribution of the light reaching the sensor, (E) 

as follows: 
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Equation 5.6 

Equation 5.6 tells us that we need to find a set of 9 values t1, t2,…t9 which convert each 

triplet RGB corresponding to a given wavelength in Figure 5.10 to the corresponding 

triplet in the LMS human spectral sensitivity curves (Figure 1.8). This means that our set 

of 9 ti coefficients should satisfy a set of 31 equations (one for each sampled wavelength). 

It is easy to see that such a matrix only exists for a very limited set of RGB and LMS 

sensitivity functions, therefore, some kind of approximation to the problem’s solution is 

needed. In practice, a working approximation to matrix T was obtained using both, the 

camera’s sensors spectral sensitivities (Figure 5.10) and the Smith and Pokorny cone 

sensitivity functions as shown in Figure 1.8. 
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The LMS curves (DeMarco et al. 1992) shown in Figure 1.8 were obtained from a publicly 

available web site20 and scaled so that they were compatible with psychophysical evidence 

and mathematical constraints for our transformations. These constraints were: 

a) The wavelength of maximum sensitivity for the L-M and S-(L+M) 

mechanisms have to be close to 580 and 506 nm respectively. This means 

that the value of L(580 nm) must be approximately equal to M(580 nm) and 

that S(506 nm) should be approximately equal to the combined values of 

L(506 nm) and M(506 nm). See introductory chapter for a discussion on 

these properties of the HVS. 

b) The rows of the transformation matrix T need to add up to the same 

number. This is necessary to keep the colour coordinates of a white object 

the same after the matrix transformation. It was implemented by scaling the 

L and S functions. 

Since these two constraints could not be satisfied simultaneously, we reached a 

compromise by selecting scale factors that would satisfy the second condition while not 

departing from the first by more than 2%. 

Each coefficient of the matrix T was obtained as follows: 
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20 Color Vision Lab data page, University of California-SD: http://www-cvrl.ucsd.edu/database/text/cones/dps.htm 
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This technique is commonly used in neuroscience to map the spectral sensitivities of LMS 

cone receptors to the output of colour displays (Conway 2001) and in imaging science to 

calculate the transformation matrix between a device-independent colour space (such as 

CIE XYZ) and a device-dependent colour space (such as that determined by the RGB 

guns of a colour monitor) (Travis 1991a). A more detailed account of these calculations is 

presented in Appendix B. 

5.2.9. Manipulation of  the LMS planes to create luminance and chrominance 

planes 

Once a picture was obtained, its central part (512 x 512 pix) was cropped out in order to 

reduce any spatial distortions that the camera’s lenses may introduce into the periphery of 

each image (although no evidence was found of this in subsequent analysis). This was also 

done to reduce significantly the processing time for our PC. After that, the picture was 

loaded in a specialised matrix manipulation software (Matlab v.5.0) and converted to double 

precision (64-bit) format. Then it was linearised using Equation 5.1 with its corresponding 

parameters (depending of the white balance mode chosen) and divided by the 

corresponding IT. Then it was transformed into the [ ]LMS  components using Equation 

5.4. The result was saved as a 64-bit image. 

For some of the analyses we needed to obtain the chrominance and luminance 

components of the picture. Previous (Buchsbaum and Gottschalk 1983; Burton and 

Moorhead 1987; Ingling and Tsou 1988; Ruderman et al. 1998,; Travis 1991b; Wyszecki 

and Stiles 1967) studies have motivated various definitions of these components in terms 
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of the Smith-Pokorny (Smith and Pokorny 1975) cone responses. In this case, the 

definitions were as follows: 
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Equation 5.7 

Our definitions of chrominance (RG_Chrom, and BY_Chrom) are based on the two 

chromatic channels that have been identified physiologically in the early visual system (see 

introductory chapter). Luminance corresponds to the subsystem that encodes achromatic 

(Derrington and Lennie 1984) visual information. RG_Chrom corresponds to the 

subsystem that compares the quantum catches of the L and M cones (Derrington et al. 

1984; Krauskopf et al. 1982) and BY_Chrom corresponds to the subsystem that mediates 

the signals of the S cones (Derrington et al. 1984). Previous work (Párraga et al. 1998a) has 

shown that adopting a divisive (shadow-removing) definition of RG_Chrom, where sharp 

shadows are avoided may provide a clue to some of the distinctive features of visual 

processing needed for this task, such as the ability to perceive the same colour despite 

changes in light intensity (shadowing). For the BY_Chrom signal we adopted a definition 

that gives approximately equal numerical values to the S and the Lum signals in the 

numerator. Since we expect the signals for L and M planes to be quite large and not 

extremely different from each other (in our particular dataset of natural fruit and foliage), 

Lum is divided by a factor of 2, which accounts for its larger numerical value (roughly 

twice the value of S). Rearranging the definition: 
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we can interpret BY_Chrom as a modulation between two signals, S and Lum/2 divided by 

the average value between them. 

It is possible that our definition of BY_Chrom is not the most appropriate and other 

manipulations of the LMS cone outputs (especially those less contaminated by luminance 

signal) yield larger differences of Fourier amplitude slopes between the Luminance and 

BY_Chrom channels. 

5.3. Image gathering 

The collection of images for our study was done under several conditions. All of the 

camera calibration was done inside our laboratory, where all parameters were controlled 

and the room could be darkened except for the target (illuminated by incandescent light). 

Indirect lighting from the projector to the camera was reduced using dark screens. Apart 

from these images, the pictures that we used for statistical analysis were taken outside the 

laboratory either in open spaces or inside the glasshouses of the Bristol Botanical 

Gardens. In all cases, the illumination was natural. On a typical day, we started around 

midday and waited until the sky was either completely overcast or clear. After that, the 

camera was fixed on a tripod, the set up checked and the picture taken using the camera’s 

timer (to avoid shaking by the operator’s hand). Particularly windy days were avoided. The 

usual places were private gardens (including the author’s garden), the University of Bristol 

Royal Fort Gardens and Botanical Gardens. Some images were completely natural and 

some were arranged to locate fruits or other vegetables against a background of leaves. 
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Although the idea behind this natural scenes analysis is that ecologically-relevant visual 

tasks (particularly searching for food among leaves) have contributed to shape the spatio-

chromatic characteristics of the HVS, we were not concerned too much in finding exactly 

the same types of fruits and leaves as primates would eat in the forest. The main reason 

for this was practical, since a collection of such pictures of fruit and leaves would imply a 

set of resources beyond the scope of this project. The second reason has to do with the 

fact that our analysis of the slope of the Fourier spectra of natural scenes is not extremely 

critical of the particular shape or coloration of the objects present in the image. For 

example, we believe that our findings would be equally valid for a whole range of images 

of reddish objects on a cluttered background of greenish patches illuminated by natural 

light, independently of the exact shape, colour and position of the objects. However, since 

this is difficult to prove with a limited picture database (and beyond the scope of this 

work), we restricted our image collection to pictures of objects that resembled those that 

are a valid target for a foraging primate. These included reddish and yellowish fruits (such 

as tomatoes, peppers, wild berries, fruit found in the tropical section of the Botanic 

Gardens, etc.) and red, yellow and blue flowers. To see the effects of different shapes and 

colorations in our image analysis we constructed a sequence of pictures of a human face 

on a background of leaves, seen from different distances, various sets of artificially-

coloured berries, etc. Some pictures of general landscape were taken. In general, we found 

that the effects of the exact colour and shape in such images were negligible (e.g. the 

Fourier statistics of a human face on a background of leaves are similar to those of a red 

pepper on the same background) as far as our analysis is concerned. Perhaps it would be 

interesting, in the future, to compare the Fourier properties of this database to those of a 

similar database, collected in the natural environment where primate colour vision has 

evolved. Our pictures were taken during the year 2000 and part of 2001. 
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5.3.1. The distribution of  colour and the number of  “red” pixels present in our 

dataset 

We obtained 124 images with a spatial resolution of 1600x1200 pixels by 24 bits (8 bits in 

each of RGB). These were taken under different conditions of illumination (sunny and 

cloudy), at different distances from the objects, and with many different kinds of non-

green objects among foliage (large red fruit such as apples and tomatoes; small red berries; 

flowers). Almost all were taken using the minimum aperture (F11 – F11.4), i.e. the 

maximum depth of field available to avoid differences in focus within the same picture. 

Sixty-six images contained “red” pixels and fifty-eight did not. We defined a “red” pixel as 

one where the estimated activation of the L cone was 1.5 times or more the activation of 

the M cone. This was done after the bimodal distribution of colours obtained in a CIE 

style plot (see next Section), with a ratio of 1.5 in the through. Twenty-seven images were 

of landscapes where objects were at distances in the range 20 - 500 m. 32 images were 

close-ups of plants with no red objects. Most of the pictures were taken with the zoom 

lens set to its telephoto (19 – 20.4 mm focal length) setting. This avoided having to bring 

the camera very close to the objects, thus affecting illumination. Linear perspective is 

somewhat affected by this procedure compared to natural viewing but this was found not 

to affect the spectral slope values in any systematic way (see Section 5.4.1 for a more 

complete analysis). Square images with angular subtense of 13.6º were cropped from the 

rectangular images, and these were reduced to a size of 512 by 512 pixels. 

Figure 5.13 shows the distribution of pixels according to their L and M cone catches for 

all our dataset, which is bimodal (it has two peaks). To produce Figure 5.13, all images 

were converted to [ , as described above, and then the relative values l= 

L/(L+M+S) and m= M/(L+M+S) computed. This distribution is optimally bisected by 

LMS
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the criterion l>1.5·m, which separates “red” from “green” pixels as shown in the plots. 

Pixels that comply with the condition l>1.5·m are shown in dark grey and the others are 

shown in light grey. 

 

Figure 5.13: Distribution of the pixels for all the image dataset in a 
CIE-style diagram where the axis correspond to the L and M cone 
ratios. Here it is possible to see the bimodal distribution of “red” 
(darker grey surface) and “green” (lighter grey surface) pixels in our 
dataset. 

5.3.2. Common practical problems 

The most common practical problems were caused by the weather. Many of our pictures 

were taken under completely overcast conditions and, in some extreme cases, in rainy 

weather (glass houses pictures). Since the values of aperture were small (F11, F11.4) the 

integration times tended to be quite long for hand-held operation of the camera. This 

problem was sorted out by using a field tripod and 10 sec timer in all occasions and taking 

special care in avoiding effects of wind. Another practical problem was to find suitable 

fruit in locations where it could be photographed. In some cases, this was set-up by 

obtaining the fruit from a local shop and placing it on some leaves or on the grass. 

Another practical problem had to do with the size of our digital pictures (about 5.5 Mb 
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each) and the capacity of the storage device (64 Mb), which meant that we could only take 

11 of them in one go, and would have to go back to the laboratory to download them 

onto a PC before continuing. 

 

Figure 5.14: Example of a log-log plot representation of Fourier 
amplitude averaged across orientations. The empty circles represent 
the average amplitude for each of the 256 sample SF values. The 
broken line is the regression, dominated by the many points at high-
SF (slope α=-1.42). The filled circles show the average amplitude 
when the sample values are only 9 (averaging regions are represented 
by the bands marked on the SF axis). The grey line represents the 
regression calculated only for these points (slope α=-1.20). 

5.4. Computation of  the slope of  the Fourier amplitude 

spectra (α) 

A standard two-dimensional fast-Fourier transform algorithm was used to derive the 

amplitude spectrum for a given luminance or chromatic (either red-green or blue-yellow) 

image representation. The DC component was removed. The usual way of calculating the 

amplitude slope requires that all SF-components of the picture are averaged regardless of 
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orientation and this average is plotted on log-log axes as shown by the empty circles in 

Figure 5.14. 

 

Figure 5.15: Scheme of the logarithmically-spaced one-octave SF 
bands used to calculate the slope of the amplitude spectrum (α). 

The usual next step would be to calculate the slope of the line and report the number as 

α. In this approach, the high-SF range of the spectrum is over-represented when we 

measure the slope and these points will determine the value of α (the exemplary line fitted 

to the empty circles in Figure 5.2 has a slope of –1.42). Our approach is somewhat 

different (Párraga et al. 1998a). Spectral slopes were measured by dividing the Fourier 

space into 9 circularly symmetric, logarithmically-spaced, one-octave SF bands (see Figure 

5.15), and averaging the Fourier content within each of the bands. The averages were then 

plotted against the mid-SF of the band in log-log co-ordinates, and the slope (α) of this line 

calculated by linear regression (as shown by the filled circles and grey line Figure 5.14). 

This prevented any bias due to oversampling of the high-SFs and reduced the overall 

effect of noise, which is primarily high-SF. The regression line fitted to the exemplary data 
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in Figure 5.15(b) has a slope of –1.20. The ordinate axis in Figure 5.14 shows the 

distribution of these bands in the SF domain. 

5.4.1. Validation 1: estimation of  the variability of  the amplitude slope with 

optical characteristics of  the camera 

Optical characteristics of the camera (aperture, zoom settings, etc.) were varied as little as 

possible to avoid introducing artifacts in the estimation of α. The smallest possible 

aperture (around F11) was used in most cases in order to maximise depth of focus and the 

preferred focal length was “telephoto” to avoid interference between the camera operator 

and the scene. The use of the smallest aperture ensured that most of the objects in the 

scene are in focus (largest depth of field). Of the scenes in our dataset, 52 had a focal 

length of 19 mm (aperture F11) and 67 had a focal length of 20.4mm (aperture F11.4). 

Only five had a 7.2 mm focal length (aperture F7) and here we explore how this may have 

influenced our results. 

To estimate the variability in the measurement of the luminance, red-green, and yellow-

blue alpha slopes we recorded a typical image of a red fruit and green foliage at different 

viewing distances. We used different zoom settings (focal length = 7.2, 9.3, 10.8, 12.4, 

14.1, 15.8, 17.6, 19.2, and 20.4mm) in such a way that the resultant subtense of the fruit 

was the same in all of the images. What varies is the degree of foreshortening of linear 

perspective in the images. We wished to know whether these effects on linear perspective 

would have any effect on our dependent variable, the spectral slope α. The values of α of 

the luminance, and chromatic representations were measured in all cases. Figure 5.16 

shows these results. It is clear that there are small fluctuations of α around the average 

value (possibly due to small changes in the distribution of the objects in the different 
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pictures or changes in the illumination) but it is also clear that there is no correlation with 

focal length. Therefore, there is no significant effect of linear perspective on the spectral 

slope of this kind of image. 

 

Figure 5.16: Variation of the slope α with the focal length of the 
camera. 

5.4.2. Validation 2: errors introduced by the camera lens 

To estimate the effects of chromatic aberration introduced by the camera lens, we took 

pictures (under controlled incandescent light conditions and under cloudy skylight) of a 

target that consisted of a white piece of paper with some black letters in bold characters. 

The lens was set to small aperture (F11.4). This produced pictures with a broad SF 

content. The three R, G and B planes that constitute the raw picture were separated and 

their contents Fourier-analysed. The slope (α) of the amplitude spectrum was measured 

for the three planes separately. The plots of Fourier amplitude versus spatial frequency in 

log-log co-ordinates were very similar for the three planes in each of the pictures. Table 14 

(below) shows the values of α for two lighting conditions. 
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Results in Table 14 show that the differences in amplitude slope between the different 

planes are very small. In the case of the cloudy skylight illumination, this difference is 

about 3 % in the worst case. Moreover, a comparison of the slope sets for the two 

illuminants suggests that the small differences in α are a result of signal-to-noise ratio 

effects arising from the illuminant rather than from of the lens. A very similar set of 

numbers was also obtained for a much larger aperture (F4) suggesting that the lens is 

generally well designed to eliminate chromatic aberration (bottom row in Table 14). 

Slope (α) R G B 

Incandescent light -1.054 -1.0368 -0.995 

Cloudy skylight -1.077 -1.087 -1.111 

Large aperture -1.010 -1.015 -1.036 

Table 14: Values of the three R,G and B amplitude slopes for the two 
pictures taken under different illumination and the third taken using 
incandescent light and a large lens aperture (F4). 

5.4.3. Validation 3: errors occurring when the images were converted from the 

camera’s RGB colour space to the human LMS cone representations 

Since the spectral sensitivities of the RGB elements in the CCD camera do not exactly 

match the spectral sensitivities of the LMS cone fundamentals, the three LMS cone 

catches cannot be computed unambiguously (see Appendix B for more details on the 

subject). This becomes evident, as camera metamers will differ from human metamers. 

Given the way our camera was calibrated, we cannot compensate for this, but we can 

provide an estimation of how large the errors are likely to be. To estimate the camera’s 

errors in determining the L, M and S cone catches for typical objects (fruits/leaves) 

photographed in these experiment, we photographed eight different objects under 

controlled illumination conditions in our laboratory. These objects were 5 different green 
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leaves and 3 red fruits (commonly found in our picture dataset). Figure 5.17 shows these 

images. 

 

Figure 5.17: Images of the 6 different red and green objects (leaves 
and fruits) used in our estimation of errors due to metamerism. 

The pictures were then converted to LMS cone representations using our standard 

procedure. The central 50x50 pixels (avoiding strong specularities, especially in the red 

fruit) were averaged and the standard deviation calculated. The value of this average was 

normalised by dividing by the total cone response (L+M+S). A similar value was obtained 

by measuring approximately the same spot with the SR and converting its spectral 

radiance output to the equivalent L, M and S cone catches. Both normalised values 

(obtained with the camera and the SR respectively) were compared and their mean 

differences found to be 4 % for the L signal and 8.7 % for the M signal (Table 15 show 

these results). 

The largest differences in both measurements coincided with the largest standard 

deviation of the average of pixels within the 50x50 central box. This is due to the fact that 

the red surfaces were producing some specular reflections and their colour was not 

uniform. The same experiments performed on a non-specular, evenly coloured surface 
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(Macbeth colour chart) gives smaller differences (less than 5%) for the L, M and S signals 

obtained with the two methods (Table 16 shows these results). 

Calculated from 
SRmeasurement 

Calculated from Nikon 
950 picture Object 

l m l m 

Vine leaf 0.461 0.444 0.441 0.417 

Red pepper 0.659 0.322 0.637 0.292 

Buddleia leaf 0.472 0.457 0.442 0.404 

Oval leaf 0.450 0.432 0.437 0.414 

Tomato 0.636 0.343 0.627 0.301 

Apple 0.638 0.323 0.611 0.299 

Bramble leaf 0.455 0.443 0.434 0.401 

Small leaf 0.462 0.448 0.438 0.405 

Table 15: Normalised values of l and m cone responses obtained 
with both the Nikon camera and the SR pointing to the set of fruits 
and leaves shown above. 

Calculated from SR 
measurement 

Calculated from Nikon 950 
picture Square 

number 
Colour 

l m l m 

7 orange 0.555 0.397 0.574 0.342 

9 moderate red 0.539 0.345 0.574 0.315 

11 yellow-green 0.481 0.460 0.457 0.423 

13 blue 0.234 0.243 0.225 0.239 

14 green 0.435 0.469 0.400 0.434 

15 red 0.593 0.332 0.608 0.303 

16 yellow 0.526 0.437 0.516 0.386 

19 white 0.429 0.388 0.413 0.367 

20 neutral8 0.428 0.387 0.416 0.367 

21 neutral6 0.426 0.386 0.418 0.367 

22 neutral5 0.421 0.385 0.417 0.367 

23 neutral3 0.421 0.384 0.427 0.367 

24 black 0.418 0.384 0.449 0.367 

Table 16: Normalised values of l and m cone responses obtained 
with both the Nikon camera and the spectroradiometer pointing to 
different squares of a Macbeth Colour chart. The first column shows 
the number of each square according to the chart enumeration. 
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5.5. Results 

Figure 5.18 shows two very different examples of photographs of natural scenes: (a) a 

landscape view of a British garden and (b) a close-up of a single ripe tomato seen against 

foliage. Picture (b) is representative of the type of images that form the majority (66 

pictures) of our dataset, containing a red object on a background of leaves, illuminated by 

natural light with shadows cast across. Picture (a) is representative of the type of natural 

scenes that is used in the various natural scenes analysis in the literature (Chiao et al. 2000a; 

Párraga et al. 1998a; Ruderman et al. 1998) and constitute a substantial part of our dataset 

(58 pictures). 

 

Figure 5.18: Two different examples of photographs of natural 
scenes. (a) Picture of an English garden and (b) picture of a ripe 
tomato against a background of leaves. The figure also shows the 
schematics of the process used to separate the luminance and the two 
chromatic information channel representations. 
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We calculated how the human L, M and S cones would have responded at each point in 

each of the scenes, and we then calculated the spatial form of the luminance signal and the 

red-green and blue-yellow chromatic signals within the HVS. 

 

Figure 5.19: Log-log amplitude spectra of the pictures shown above: 
(a) garden scene and (b) ripe tomato. Fourier amplitude values for 
the luminance representations are shown on the left y-axis and 
amplitude values for chromatic representations are shown on the 
right y-axis. The grey arrow points at the Fourier amplitude plot of 
the red-green chromatic signal for the tomato picture, which is 
steeper. 

 Figure 5.19(a) shows the amplitude spectra plots for the luminance and for the two 

chromatic signals for the garden scene of Figure 5.18(a). It is clear that the slopes (α) are 
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very similar for the three graphs, though it should be noted that the magnitude of the 

amplitude in the red-green signals was considerably less than in the blue-yellow signal (the 

luminance has to be plotted on a different scale). This is not surprising since the values of 

M and L are similar so L-M is closer to zero. 

Since human colour vision is biased more towards low-SFs than is luminance vision, we 

might have expected the spectral slope of the chromatic spatial signals to be steeper than 

that of the luminance signal, given that a steeper spectral slope gives a greater weight to 

low-SFs. The failure to find such an effect for the scene in Figure 5.18(a) confirms the 

earlier study of Párraga et al (Párraga et al. 1998a) using hyperspectral images. 

Figure 5.19(b) shows plots of the Fourier amplitude spectra of the luminance and the two 

chromatic spatial signals of the close-up image of the ripe tomato “split” by a luminance 

shadow in Figure 5.18(b). The grey arrow points at the Fourier amplitude plot of the red-

green chromatic signal for the tomato picture. It is, indeed, clear that the spectral slope (α) 

of the red-green spatial signal is now steeper than those of the luminance or blue-yellow 

spatial signals; the total amplitude for the red-green signal is, not surprisingly, much 

greater than for the general garden scene. 

Figure 5.20 and Figure 5.21 show the generality of our finding that the amplitude 

spectrum of the red-green spatial signal is steep for close-up images of reddish objects 

viewed against foliage. In Figure 5.20, a plot of the amplitude slope for the luminance 

representation versus that of the red-green chrominance representation is shown. The 

graph shows two groups of points corresponding to pictures containing red objects 

(hollow circles) and pictures without them (grey triangles). In this graph, the majority of 

the scenery containing red objects lies below the diagonal and the majority of the 

“regular” scenery without red objects lie on or above the diagonal. 
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Figure 5.21(a) shows the ratio between the spectral slopes obtained for the luminance 

spatial signal and the red-green spatial signal for each scene as a function of how many 

“red” pixels (in %) there were in the scene (see section 5.3.1 above for a definition of a 

“red” pixel). 

 

Figure 5.20: Plot of the amplitude slopes (α) for the luminance 
representations against the red-green chrominance representation 
slope. The line shows the diagonal of the plot. Round symbols 
correspond to pictures containing red objects and triangles 
correspond to pictures without any red object. 

It can be seen that the results for all scenes follow a similar trend, and are differentiated 

on the basis of red pixel content. The data plotted on the left correspond to pictures of 

scenery without a strong presence of red objects (normal scenery—distant landscapes or 

close ups of foliage) and their αlum/αchrom slope ratio near unity is consistent with previous 

findings (Párraga et al. 1998a). Scenes consisting of a background of foliage and a reddish 

object such as fruit appear on the right side of the graph. The important predictor of slope 
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ratio appears to be the proportion of red pixels on the leafy background. In general, the 

spectral slope of the red-green signal is greater than that of the luminance signal whenever 

the scene contains many red pixels. 

 

Figure 5.21: Ratio of the spectral slopes of the luminance and 
chromatic representations, for different image types, as a function of 
the percentage of pixels signalling the presence of a “red” object. The 
squares correspond to scenes with no presence of “red” pixels (i.e. 
they are plotted on the y-axis). The line in (a) represents the 
approximate data trend and reflects the fact that the average 
αlum/αchrom slope ratio for normal scenery is about 1.1 

Measures of the slope α of synthetic pictures with a large red object (like the tomato in 

Figure 5.18(b)) or many smaller red objects totalling the same area, show that the 

amplitude slope does not depend directly on the number of red objects. There seems to 

be a slight tendency to larger spectral slopes when red pixels are grouped together to 
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represent a single object, but many other unknown factors determine this result. When the 

pixels are clustered into several groups, representing several distinct fruits, the slopes of 

the amplitude spectra are not as steep, but the slope for the red-green signal is always 

steeper than for the other two signals. 

In contrast with the previous results, Figure 5.21(b) shows that the spectral slope of the 

blue-yellow spatial signal does not differ systematically from that of the luminance signal. 

Table 17 shows the numerical means and STD of the α slope ratios for the different 

groups of images. There is no evidence in this set of images to suggest that there is any 

advantage in the bias of the human blue-yellow system to low-SFs. There may be other 

constraints on the development of the spatial characteristics of blue-yellow colour vision 

in primates. For example, it is possible that low sensitivity to high blue-yellow-SFs is a 

consequence of chromatic aberration in the eye and/or the sparse array of short-wave 

sensitive cones (see section 5.7 -Conclusions). 

Numerical means 
and STD 

Normal scenery (not 
including red objects); 

n=58. 

All other images 
(including red objects); 

n= 66 

Lum/(Red-Green) 
slope ratio 1.10 ± 0.22 0.88 ± 0.09 

Lum/(Blue-Yellow) 
slope ratio 1.04 ± 0.14 1.05 ± 0.10 

Table 17: The Table shows the numerical means and standard 
deviations of the slope ratios. ‘n’ refers to the number of pictures 
analysed in each case. 
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5.6. Discussion 

5.6.1. Optimality issues. Is there an optimal viewing distance? 

The prediction from human contrast sensitivity measures is that, if chromatic images 

contain more low-SF amplitude than luminance images, the ratio (αlum/αchrom) should be 

less than unity. We calculated the optimal value for this ratio, assuming optimal capture by 

the CSFs (Mullen 1985). 

To calculate this, we fitted functions to the CSF data. Figure 5.22 shows these. The SF 

axis (x-axis in Figure 5.22) was divided into logarithmic SF-bands similar to those in 

Figure 5.15(a). We used the angular subtense of the camera optics to convert the bands 

from cycles/picture to cycles/deg. After this, we calculated the areas under each of the 

human CSFs for every band. The total areas were normalised to unity in both cases. 

 

Figure 5.22: Functions fitted to the Mullen (1985) contrast sensitivity 
data for luminance (solid black lines) and red-green isoluminant 
(broken grey lines) gratings. The lines on the x-axis show the 
divisions of the Fourier space (similar to the bands shown in Figure 
5.15) 
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Following this, we proceeded in similar fashion with a pair of exponential functions (that 

are similar to the linear Fourier amplitude functions when plotted in log-log space –see 

Figure 5.23). One of these (plotted in solid black in Figure 5.23) had a slope of –1.1 

corresponding to our average value of α for “normal scenery”. The slope of the second 

function (plotted as a broken grey line in Figure 5.23) was our free parameter. We found 

that a ratio of slopes of 0.76 for these two curves makes the ratio of the areas under them 

fit optimally with the ratios of the areas under Mullen’s CSF data. 

 

Figure 5.23: Plot of two exponential functions (lines when plotted in 
log-log space). The slope of the solid black line was fixed to –1.1. The 
slope of the other line was varied so that the ratio of areas under 
each of the lines fit optimally the ratio of the areas under the CSF 
data. The SF bands were chosen to be the same as in the previous 
figure. The areas were normalised to unity and calculated for each of 
the SF bands in all cases. 

Once we had established this value for the optimal α slope ratio, we plotted the ratio of 

the spectral slopes, (for the luminance image and the red-green chromatic image), against 

the distance of the main objects in the scene from the camera in Figure 5.24. Distances 

were estimated from the real size of the object (in cm), the size of the object on the final 

picture (in pixels) and the subtended angle of our pictures. It is clear that the distant 
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scenes like Figure 5.18(a) have slope ratios around unity, but close views of red objects 

against foliage have lower slope ratios. The ratio matches the calculated optimal value for 

the human CSF at a viewing or grasping distance of about 0.4 m. This estimate does 

require some assumptions and would be influenced, for instance, if we had taken images 

with a different focal length of camera lens. However, our estimate of 0.4 m is of the same 

order of magnitude as the distance at which the human red-green spatio-chromatic system 

will be optimised for identifying red or yellow fruits against foliage. It could therefore be 

conservatively argued that this calculation suggests that the optimal viewing distance is of 

the order of magnitude of typical primate grasping distance. 

 

Figure 5.24: The relationship between the ratio of the spectral slopes 
(of the luminance and red-green chromatic representations) and 
distance from the camera to the main object in that scene, assuming 
the camera’s (13.6°) angular subtense. The squares on the right 
represent “distant landscape” scenes, i.e. scenes where objects (trees, 
rocks, bushes, etc.) were numerous and their location was further 
away than 50 m. The line represents the data trend and reflects the 
fact that average values of αlum/αchrom slope ratio are equal to 1.0 for 
these landscapes. The log x-axis was chosen to best show the 
geometrical relationship between the variables. 
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5.6.2. What makes the amplitude slope for the R-G representations of  pictures 

containing fruit steeper? 

Our divisive definition of RG_chrom (Equation 5.7) leads to the removal of light intensity 

variations (shadows), thus producing a particular effect on pictures with red objects. For 

example, in the case of a single red fruit against a background of leaves (shown in Figure 

5.18(b)) with luminance variations (shadows) across the scene, our definition of 

RG_chrom produces an image where the fruit is represented by a central “red” region 

surrounded by a uniform “green” region (leaves). This causes the fruit to “pop out” since 

all background structure (luminance variations) is removed. The final RG_chrom picture 

is essentially similar to a “portrait” of a single darker object on a uniformly grey 

background. Our simulations show that monochrome portraits of single objects over 

uniform backgrounds tend to have steeper amplitude slopes. In Figure 5.25 a dark object 

is set against a cluttered background (panel a) which is then reduced in contrast by half 

(panel b) until it becomes halftone grey (panel c). Measurements of the Fourier amplitude 

slope show that it becomes more negative (steeper) as the background clutter is removed 

(for picture (a), α= -0.97, for picture (b), α = -1.075 and for (c), α =-1.26). 

 

Figure 5.25: Synthetic pictures produced to show that Fourier 
amplitude slope is steeper for less cluttered backgrounds. 
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The “clutter removal” effect of the red-green chromatic system does not seem to be very 

strong for the yellow-blue system. Figure 5.18(b), shows how the red-green system 

eliminates the dappled background of leaves, giving a representation of a uniform fruit on a 

uniform background, allowing the fruit to “pop out”. The same figure shows that the blue-

yellow chromatic image does not provide the same uniform background. There are two 

main possible reasons for this. One is that shadow regions have indirect illumination from 

bluish skylight, and the other is that green leaves differ in their blueness (Dominy and 

Lucas 2001). 

5.6.3. Generality of  our results 

We have collected stimuli in England and not in a tropical forest with the exact 

illumination, vegetation, etc. in which the HVS is thought to have evolved. However, we 

believe that these scenes are part of a wider variety of stimuli that can match the human 

contrast sensitivity data well, regardless of local environmental factors, and that our results 

would extend to any similar imaging situation (e.g. another garden or relevant forest). This 

generalisation implies that we cannot argue for the optimal encoding of any particular type 

of reddish or yellowish object on a leafy background. We have seen that any such object 

would do just as well, whether it is a red fruit (Osorio and Vorobyev 1996; Regan et al. 

1998; Sumner and Mollon 2000a), a reddish human face, or a leaf which is more yellow 

than the rest (Dominy and Lucas 2001). 

Since our results can be replicated with such different scenes as those of a human face, 

and a reddish blob, they do not specify exactly which kinds of images and tasks were 

associated with the evolution of colour vision in primates. What we have found is that 

human (and presumably other primate) colour vision is efficient at encoding images of 

reddish or yellowish fruit, viewed up close, against a leafy background. Our findings do 
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not rule out the idea that the low-SF bias of the red-green chromatic system is determined 

by optical factors such as chromatic aberration, but we show that such a bias would not 

disadvantage a foraging primate and it might even aid the task of picking ripe fruit or 

leaves. 

This behaviour of the blue-yellow system implies that it is not optimised for detecting 

objects in foliage. Many questions remain to be answered. For example, what is the role of 

the low-pass transfer characteristic of the human blue-yellow system? There seems to be 

little connection between these and the efficient detection of fruit or any other target that 

we have discovered. However, it may be that a different class of images will reveal similar 

optimisation of the blue-yellow system, but it seems likely that other constraints such as 

the sparse sampling by the mosaic of short-wavelength sensitive cones in the retina, 

defocus of short wavelengths on the retina due to chromatic aberration, etc. are 

responsible for the blue-yellow system’s properties. We have not investigated all the 

possible issues here. 

5.7. Conclusions 

a) We argue that the spatio-chromatic properties of a particular group of 

natural scenes (those including reddish or yellowish objects on a 

background of leaves) are relevant for understanding the HVS since they 

may represent stimuli that trichromatic primates and humans have evolved 

to optimally encode. 

b) Our results suggest that the spatio-chromatic properties of the red-green 

chromatic system (in particular, the higher response of this system to low-
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SF) are optimised for detecting reddish or yellowish objects against a 

background of foliage. 

c) The blue-yellow chromatic system retains the same spectral slope as the 

luminance system and therefore, does not show any optimisation to the 

properties of the natural scenes investigated in this work. 

d) The spatio-chromatic properties of the red-green chromatic system may be 

optimised for the encoding of any reddish or yellowish objects on a 

background of foliage, at viewing distances consistent with near (within 

reach) space. 



 

Chapter 6.  
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C h a p t e r  6  

CONCLUSIONS 

Is the human visual system optimised for encoding the statistical 
information of  natural scenes? 

6.1. Summary 

Optimisation theories in biology are often based on three assumptions (Maynard Smith 

1978). The first assumption considers all the possible observable features of an individual 

(regarded as a consequence of the interaction of its genotype with the environment), 

which in our case are the spatial and chromatic properties of the HVS. The second 

assumption regards what is maximised. Ideally, this should be the fitness of one 

individual, but in most cases is just some component or indicator of fitness. In our case, 

we consider maximisation of performance in a visual discrimination task and a foraging 

task. The third assumption is often about the mode of inheritance and population 

structure (natural selection cannot produce adaptation unless there is heredity), which we 

have not examined here. Throughout this work, we have tested how adequate the two 

first hypotheses are and to what extent they account for the spatio-chromatic properties 

of the HVS. 

Our first approach to the optimisation problem has been to compare the performance of 

the HVS in an ecologically-relevant visual task in a range of visual conditions that differ 

slightly from those encountered in the visual environment. Our predictions are that best 

performance in the task will coincide with the properties met in those real visual 
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environments. Our second approach has been to consider the visual environment similar 

to that encountered during a primate foraging task and compare its statistical contents to 

the modulation transfer function of the HVS for chromatic and achromatic signals. As a 

control, we did analyse the same statistical properties of the general visual environment (it 

did not correspond to that encountered in a foraging task). Here we predicted that the 

modulation transfer function of both chromatic mechanisms would be matched to the 

environmental signal in the case of images corresponding to the foraging environment. 

The results obtained lead us to conclude that the HVS is optimised to efficiently capture 

some the properties of the environment in the presence of ecologically-relevant visual 

tasks. The overall conclusion must be treated with caution since we have shown 

optimisation for only a set of the HVS spatio-chromatic properties, and considered only a 

subset of all possible visual tasks. 

Our results considering achromatic (foveal) spatial vision and chromatic vision seem to 

point to some degree of optimisation between the HVS and the properties of the 

environment. The situation is more complex in the case of peripheral vision, where some 

of the previous hypothesis might not be valid. It might be that peripheral vision does not 

satisfy the same criteria as foveal vision and we considered optimisation for the wrong 

visual task (image discrimination) when we should be testing a completely different 

variable, such as performance in movement detection, etc. This might explain the 

consistently superior foveal performance in this discrimination task despite compensatory 

resizing of the stimuli, etc. 

In Chapter 5, we hypothesised that the main evolutionary reason of the chromatic 

properties of the HVS was to aid in foraging tasks (Mollon 1989; Mollon and Regan 1999; 

Regan et al. 1998, 2001; Regan et al. 1996; Sumner and Mollon 2000a, b). This hypothesis 
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is reinforced by our findings that optimal correspondence between the image statistics and 

the HVS modulation transfer function occurs at distances of the order of magnitude of 

grasping distance. We should also point out that in the case of blue-yellow chromatic 

vision, we did not find any relationship between its spatio-chromatic properties and those 

of the visual environment for our picture dataset. This may be because of two reasons (a) 

the subset of natural scenes considered (and therefore the task) is not adequate to the 

features of the blue-yellow mechanisms and (b) there are strong physical and physiological 

constraints (e.g. imperfect eye optics) which have played a key role in determining the 

limits of the system. 

Much of our psychophysical results can be predicted from a simple multi-resolution 

model of local contrast discrimination involving only visual processes occurring at the 

level of the retina and area V1 of the visual cortex (i.e. “low level” visual processes). This 

points to the possibility that visual optimisation for the tasks proposed in Chapter 2 and 

Chapter 3 occurs at these levels. There are ways to further explore this hypothesis: for 

example by designing an experiment where the observer has to compare features of the 

reference and test image which do not correspond to local changes of contrast (e.g. by 

inverting or reversing the reference image). This will completely disrupt the model’s 

performance and we predict it may possibly do the same with the observer’s. 

Our modelling results show that complex ways of combining the output of receptors and 

channels do not necessarily represent an improvement over the simplest approach, which 

is not completely in conflict with the literature (Rohaly et al. 1995; Watson 1993b; Watson 

and Solomon 1995). Another important feature of the model is its “robustness” to 

changes in the different parameters (filter bandwidths, shape of the contrast 

discrimination function, shape of the CSF function, etc.), which is consistent with the 
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variability found in nature. This suggests that it is the combination of many features and 

not only one of them, what is responsible for the optimal performance of the HVS in this 

visual discrimination task. 

6.2. Answers to the specific questions of  Section 1.10 

a) Our results show that foveal achromatic vision in humans is optimised for 

performing a local contrast discrimination task, which we believe is 

ecologically-relevant in the presence of natural second-order statistics. 

b) There are differences in terms of performance and optimisation between 

foveal and peripheral achromatic vision for the same ecologically-relevant 

discrimination task. Peripheral vision performs consistently worse than 

foveal vision and does not seem to be optimised to perform this task in the 

presence of natural statistics in the same way as foveal vision is, despite 

compensatory scaling factors. 

c) A simple multi-resolution model of local contrast discrimination involving 

only “low level” visual processes can replicate the performance of the HVS 

in our contrast discrimination task, suggesting the lack of involvement of 

“higher” cortical processes. 

d) We have found that the spatial properties (in particular, the physiological 

imbalance found between the shape of the modulation transfer functions) 

of the red-green chromatic and achromatic mechanisms of the parvocellular 

pathway are reflected in the statistical spatial and chromatic properties of 
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natural scenes. Our results show that this is not the case for the blue-yellow 

chromatic mechanism. 

6.3. Future work 

Throughout this research, we have encountered several ideas for future work, which may 

improve our understanding of the complex and fascinating relationship between the HVS 

and the properties of the visual environment. 

The incorporation of the hypothesis of task-related optimisation has been a powerful tool, 

improving our capacity to make quantitative predictions using the optimisation paradigm. 

Following this, we have found that there are cases where the properties of the HVS do 

not match the properties of the environment (e.g. peripheral spatial vision and blue-yellow 

chromatic modulation transfer functions). However, we think that with the incorporation 

of new factors, such as other (more specific) ecologically-relevant visual tasks it is possible 

to account for such failures. Particularly, we believe that evaluating peripheral vision’s 

performance in a different task, (e.g. object detection or movement detection) in the 

presence of natural scenes statistics may reveal some kind of optimisation, closer to what 

foveal vision has produced for discrimination tasks. Something similar may happen when 

we analyse a dataset of natural scenes that reflect some ecologically-relevant task which 

the blue-yellow visual system has evolved to perform. May be that in the case of the blue-

yellow chromatic system, the relevant task is related to the presence of blue wavelengths 

in the light scattered by the atmosphere and in the shadows. We believe that it would be 

interesting to explore these possibilities in the future. 

Another interesting possibility to explore is the role of “higher” visual processes in our 

visual discrimination task. For example, it might be interesting to try to disrupt the 
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performance of “lower” level visual mechanisms by either resizing, inverting or contrast-

reversing the reference image and ask observers to perform the same discrimination task 

when local contrast comparisons are not possible. This might provide a disruption with a 

considerable increase of the discrimination thresholds and a change in the characteristics 

of the optimal stimuli. 

Regarding the model discussed in Chapter 4, there is much room for improvement. The 

availability of faster and cheaper computers mean that we can now add many layers of 

complexity to our calculations (e.g. multiple orientation channels, different combinational 

rules, etc.) which may or may not improve the model’s predictions. Another 

improvement, already discussed in Section 4.4.6, regards a possible “calibration” of the 

model. 

We hypothesised that the image database collected in Chapter 5 has the same 

characteristics in terms of Fourier amplitude slope as similar databases collected anywhere 

in the world. This hypothesis could be tested by gathering images in the rainforest 

environment, where primate vision has evolved. At the moment, we have collected such 

images in Kibale Forest, Uganda and we are in the process of analysing them. Preliminary 

results show that natural scenes statistics may be the same regardless of changes in 

illumination, fruit and leaf coloration, etc. 

So far we have applied different paradigms (spatial contrast discrimination and foraging) 

to study the achromatic and chromatic properties of the HVS. A combination of these 

paradigms by creating a morph colour discrimination task where the observer has to 

discriminate between two slightly different morph pictures based only on their colour 

differences may provide an insight into any optimisation of the chromatic channels to 

natural scenes. This can be done both ways, by creating a morph dataset with three 
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directions of change: (a) the morph spatial change, (b) the slope (α) of the Fourier 

spectrum in the chromatic plane and (c) the slope (α) of the Fourier spectrum in the 

luminance plane. A typical experiment may consist of an observer discriminating changes 

along the morph axis while one of the other axes varies, keeping the rest constant. Our 

predictions in this case would be that optimisation along the chromatic axis may not 

correspond to that along the luminance axis. 
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A p p e n d i x  A .  

ESTIMATION OF ERRORS 

A.1.  Fitting a cumulative normal to the psychophysical data 

The performance of an observer in our psychophysical experiments is reported as morph 

thresholds (expressed in % of morph). This is classically a measure of the morph change in 

the stimulus sequence necessary to produce a given level of performance. The results are 

also characterised by the rate at which performance improves with increasing morph 

change in the sequence. These two parameters are derived from a psychometric function, 

which describes the dependency of the observer’s performance to the stimulus’ change. 

Psychophysical data are obtained by sampling the observer’s performance on our task 

(morph discrimination) at a number of different stimulus levels (see Figure A.1). In Figure 

A.1, each of the empty squares represents the average performance on a group of n trials 

and the line represents the fitted psychometric function. 

To obtain the psychometric function, we applied the standard procedure (Finney 1971; 

Watson 1979) of fitting to the measured data the integral of a normal distribution 

(cumulative normal) which was constrained to fall between 50% (the guess rate in a 

2AFC) and 98% (allowing for a 2% “finger error”). 

The fitting procedure cannot be a normal least squares fit since the errors on each morph 

percent value are different and, more importantly, they are asymmetrical about the 

measured probability. Figure A.1 shows that confidence bars at higher morph change 

values cannot go over 100% but they can stretch down up to smaller values. The fitting 
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method employed here consists of maximising the logarithm of the likelihood function 

(Collet 1991; Dobson 1990). 

 

Figure A.1: Example of a typical set of psychophysical data obtained 
from a morph discrimination experiment. The ordinate shows the 
stimulus change (as a % of morph) and the abscissa the percent of 
correct answers. The curve shows the fitted psychometric function 
and the cross at the centre indicates the estimated threshold (74% 
correct answers) 

If we suppose that in a typical example (like that shown in Figure A.1) each block consists 

of n of experimental trials and K is the total number of such trials, then we could model 

the psychometric function as (Wichmann and Hill 2001a): 

),;()1(),,,;( βελγγλγβεψ xFx −−+=  

Equation A.1 

Where x is the morph change corresponding to each stimulus group (boxes in Figure 

A.1), γ is the base rate of performance (in our case fixed at 0.5 –or 50%) and λ is the miss 

rate or “finger error” in our 2AFC experiment. The parameters ε  and β determine the 
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threshold of the psychometric function and its slope respectively. F is a function chosen 

to have a range (0,1). Together, all four parameters { λγβε ,,, } determine the shape and 

position of ψ. We may call this set of parameters θ and rewrite Equation A.1 as );( θψ x . 

)

− ixp ));( θ

A.2. Maximum-likelihood estimation 

Given that in our case the values of y (observer’s performance) have been generated by 

Bernoulli processes21, it is possible to compute the likelihood value for a set of parameters 

θ, given the observed values of y as: 

/();( θθ ypyL =  

Equation A.2 

Where the first term is the likelihood function and the second term is the probability 

function. The reversal in the order of notation points out the fact that once the data has 

been collected, y is fixed and θ is the variable. For simplicity, we assumed that y represents 

the fraction of correct answers and varies between 0 and 1. After expanding Equation A.2 

we have: 

( )∑
=

−+=
K

i

nyny
i

n
y

iiiii

i
xpCyL

1

)1(1();();( θθ  

Equation A.3 

                                           
21 A Bernoulli process is a stochastic process consisting of finite or infinite sequence of independent random variables 

X1, X2, X3,..., such that (a) for each i, the value of Xi is either 0 or 1 and (b) for all values of i, the probability that Xi=1 is 

the same number p. 
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To find the maximum likelihood of L we have to find the set of parameters  for which 

the likelihood value is maximum: 

θ̂

);();ˆ( yLyL θθ ≥  

Equation A.4 

As it is frequently the case, log functions are easier to maximise numerically, and since the 

log function is monotonic, it will be maximised by the same set of parameters as L. We can 

write Equation A.3: 

));(1log()1();(loglog);(
1

θψθψθ iiiiii

K

i ii

i xnyxny
ny
n

yl −−++







= ∑

=

 

Equation A.5 

The easiest way to determine the set of parameters  that maximises Equation A.5 is to 

do it iteratively maximising the terms of the l that depend on θ. The implementation of 

this (called the Nelder-Mead SIMPLEX search algorithm) can be found in the literature 

(Press et al. 1992). 

θ̂

A.3. Estimation of  the goodness of  fit (χ2) 

To assess the goodness-of-fit of our psychometric function, we use a measure called 

deviance (D), defined as twice the difference between the log-likelihood of a perfectly fit 

function and l( ;y). A perfectly fit function would have many parameters and go though 

all the data points, thus its residual error (between the data and the predictions) is zero. 

θ̂

maxθ  denotes the set of parameters for that perfectly fit function and K (the number of 

block presentations) represents now the number of free parameters. Following this: 
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[ ]);ˆ();(2 max ylylD θθ −⋅=  
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θ
 

Equation A.6 

Since our fitting has two free parameters (ε  and β) and the perfectly fit function has K 

free parameters, our measure of deviance has K-2 degrees of freedom. Deviance is 

preferred for assessing goodness of fit rather than, lets say, likelihood because for 

binomial data its distribution is asymptotical (Wichmann and Hill 2001a). 

A.4. Effect of  stimulus-independent errors (lapses) 

Maximum-likelihood parameter estimation is extremely sensitive to stimulus-independent 

errors (Harvey Jr. 1986; Swanson and Birch 1992). This errors, (also called “observer 

lapses” or “finger errors”) can bias dramatically our thresholds and slopes estimates. This 

misestimation is a direct consequence of the binomial log likelihood error metric 

represented in Equation A.5. When 1);( →θψ x ; the third term 

−∞→−− ));(1log()1( θψ iii xny ; unless the coefficient in)iy1( −  is 0. This coefficient 

will be equal to 0 only when performance is perfect (remember that yi is the proportion of 

correct answers). In case of an observer lapse, the coefficient becomes non-zero and the 

large negative term influences the sum. This problem is solved by allowing the coefficient 

λ in Equation A.1 to take a non-zero value (Wichmann and Hill 2001a). We adopted a 

fixed value of λ = 0.02. 
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A.5. Estimation of  the standard error (SE) 

Standard errors were estimated from Edwards (Edwards 1972). In this approach, we 

know the value of α (our threshold estimate) and want to know what range of 

psychometric functions (each with its underlying threshold) could have given us that. If 

we fix the value of β to be the one giving the biggest likelihood and make γ and λ known 

constants, we can plot l( ) against α and obtain a function with a peak at the best fit βα ˆ,

α̂ . The goodness-of-fit it is related to the shape of this peak (e.g. very sharp peak means 

we know the threshold precisely). Consequently, the standard error can be estimated as 

the second differential of the likelihood function l( ). βα ˆ,

2

2 )ˆ,(1
α

βα
∂

∂
−=

lSE  

Equation A.7 

This technique has been criticised for two different reasons: (a) lapses (stimulus 

independent errors) produced by human observers can bias the estimates of the 

psychometric function and (b) psychophysical datasets are usually rather small by the 

standards required for this statistical test. The estimation of the standard errors from 

staircase simulations (Monte Carlo resampling techniques) seeded from the original data 

fit has been advocated in the literature (Wichmann and Hill 2001a, b). 

An estimation of the difference between our method for estimating standard errors and 

the staircase simulations was done by Tolhurst, D.J. and Chirimuuta, M. (unpublished 

observations). They concluded that standard errors estimated by staircase simulations are 

slightly bigger than those estimated by Equation A.7. They also pointed out that error bars 



 

297

in our standard errors estimations should be asymmetrical (i.e. the thresholds measured 

are more likely to be too small than too high). 
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A p p e n d i x  B .  

CALCULATION OF THE RGB TO LMS TRANSFORMATION 
MATRIX 

B.1.  Device-dependent colour space 

In the course of the calibration of the Nikon 950 digital camera, we encountered a colour 

space defined by the three R, G, and B camera sensors. Each of these sensors produced 

values for each of the component pixels in the range 0-255 (8 bit values). For example, 

light (which is a combination of wavelengths) could stimulate the three camera sensors 

and produce a colour defined by the triplet [ ]RGB =(129, 152, 240). This triplet 

determines the position of a point (or colour) in a cube where each of the axes represents 

how much the input light has stimulated each of the three RGB receptors (which in turn 

depends on the receptor’s spectral sensitivity). Since the receptor’s stimulation depends on 

the Nikon Camera setup (camera’s sensors sensitivity, white balance, etc.), the colour 

space produced by each combination of camera parameters is called a “device-dependent” 

colour space. On the other side, a “device-independent” colour space is one whose colour 

coordinates are fixed and produce the same triplet every time they are applied to the same 

colour. An example of a device-independent colour space is the CIE 1931 colour space 

discussed in Section 1.3.6, which is based on the )(),( λλ yx  and )(λz  standard colour 

matching functions. Another device independent colour space is that determined by the 

Smith and Pokorny human cone spectral sensitivity functions (L( λ ), M( λ ) and S( λ )), 

also discussed in Section 1.3.6. 
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B.2. Calculation of  the CIE 1931 tristimulus values 

An example of how the spectral sensitivity functions that determine a colour space 

interact with input light to produce the colour space coordinates is the calculation of the 

CIE 1931 tristimulus values (also called XYZ values). The broken curve (plotted on the 

right side y-axis) in Figure B.1 shows a typical distribution of spectral energy, (radiance) 

reflected from an object illuminated by a tungsten light source (dark thick curve). The grey 

curve (plotted on the left y-axis) in Figure B.1 illustrates the spectral reflectance 

corresponding to the same object. 

 

Figure B.1: Incident and reflected spectral radiance (right side y-axis) 
from an object with a given spectral reflectance (left side y-axis). 

Given a surface with spectral reflectance R( λ ) illuminated by light with spectral 

distribution E(λ ), the X, Y and Z tristimulus values are calculated as follows: 
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Equation B.1 

Where )(),( λλ yx  and )(λz are the CIE 1931 standard observer functions and K is a 

normalising factor which makes Y= 1 for a surface that reflects 100% at all wavelengths. 

In the exemplary case shown in Figure B.1, XYZ= (173, 156, 12). Figure B.2 illustrates 

these interactions. 

 

Figure B.2: The CIE 1931 standard observer colour matching 
functions (left y-axis) and the spectral radiance of light reflected from 

the same object shown in the previous figure. 
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B.3. Calculation of  the chromaticity coordinates 

The values of the x, y and z chromaticity coordinates can be calculated from the X, Y and 

Z tristimulus coordinates as follows: 

ZYX
Zz

ZYX
Yy

ZYX
Xx

++
=

++
=

++
=

 

Equation B.2 

Where the third coordinate (z) can be calculated from the other two (z=1-x-y). This means 

that we can obtain the chromaticity coordinates of any complex light stimuli by integrating 

as described above and all possible colours can be represented by only two numbers. 

Plotting the values of x and y for monochromatic light produces a curve called spectral 

locus. 

B.4. Calculation of  the LMS cone excitation values 

Similarly, we can calculate the amount of excitation of the three pigment types (L, M and 

S) for a complex light stimulus I( λ ) by using the Smith and Pokorny (Smith and Pokorny 

1972) cone spectral sensitivity functions (l( λ ), m( λ ) and s( λ )). Figure B.3 shows these 

functions. 
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Equation B.3 

We could also calculate the amount of excitation that a primary such as )(λx  would 

produce: 
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Equation B.4 

Each of the CIE 1931 standard observer primaries )(),( λλ yx  and )(λz

]

 has a defined 

overlap with the absorption spectra of the three pigments and therefore leads to a defined 

sensation. A linear increase in one primary would traduce to scalar multiplication with the 

pigment sensitivities. Because of the principle of univariance, we can add the influences of 

the three CIE primaries to the resulting excitations of the three L, M and S pigment types. 

This implies that there is a linear transformation between the [  tristimulus values 

and the [  colour space determined by the pigment isomerizations. 

XYZ

]LMS
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Figure B.3: The Smith and Pokorny (Smith and Pokorny 1972) cone 
spectral sensitivity functions (left y-axis) and the spectral radiance of 
light reflected from the same object shown in the previous figure. 

B.5. Calculation of  the RGB to LMS transformation matrix 

The transformation between the camera’s [ ]RGB  space coordinates and the [ ]LMS  cone 

space coordinates can be obtained by finding the best solution to the transformation 

matrix T in Equation B.5: 
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Equation B.5 

Since both systems do not fill the orthogonality requirements to make this transformation 

exact, Equation B.5 does not have an exact solution. An approximate solution can be 

found by projecting the axis of one coordinate system in the other as if they were 
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orthogonal. To do this we need to know the camera’s R, G, B values produced by light 

with spectral profile similar to that of the l( λ ), m( λ ) and s( λ ) cone spectral sensitivity 

functions. 

∫=
λ

λλλ dRlLR )()( ;  ; ∫=
λ

λλλ dGlLG )()( ∫=
λ
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λλλ dBsSB )()(

Each coefficient of the matrix T corresponds to one of these “projections” of the R, G 

and B primaries into the L, M, S space. 

BGR

BGR

BGR

SSS
MMM
LLL

T =  

Equation B.6 

Now, suppose that the camera’s RGB sensors are illuminated by light with the same 

energy across the visible spectrum (white light). Because of the normalisation applied to 

the camera’s spectral sensitivity functions, such light will produce a similar output in each 

of the RGB sensors. 

BGRw

BGRw

BGRw

SSSS
MMMM
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++=
++=

++=
 

Equation B.7 
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]

If we assume that similar light will also produce equal activity in the three cone types 

, it is possible to map the white point from one space to the other. Mathematically 

this can be represented as: 

[LMS

www SML ==  

Equation B.8 

We can satisfy Equation B.6 and Equation B.8 simultaneously in two different ways. One 

option is to solve the following equation: 

0.1
0.1
0.1
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BGR

BGR

BGR

 

Equation B.9 

by finding the vector X that “normalises” the sum of the row so that they all add up to the 

same number. The other option is to compute a1·l( λ ), m( λ ) and a2·s( λ ) cone spectral 

sensitivity functions where a1 and a2 are normalising parameters, so that the rows of 

matrix T add up to the same number. We chose to explore the second possibility. Figure 

B.4 shows a plot of the Smith and Pokorny (Smith and Pokorny 1975) cone sensitivity 

functions after they were normalised so that Equation B.8 is true for the Nikon 950 

camera (a1= 0.856, a2= 1.418). 

Figure B.5 shows a plot of the opposing red-green (M-L) and blue-yellow (S-(M+L)/2) 

signals. From the same figure it could be seen that the wavelength of maximum sensitivity 

for the L-M and S-(L+M) mechanisms are close to 570 and 500 nm respectively, which is 

near the psychophysically measured values (580 and 506 nm) for colour matching 

experiments. 
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Figure B.4: Smith and Pokorny (Smith and Pokorny 1972) cone 
spectral sensitivity functions normalised. 

The final transformation matrix T was obtaining after calculating the parameters in 

Equation B.6 using the functions plotted in Figure B.4 and the CIE 1931 standard 

observer functions ( )(),( λλ yx , )(λz ). 

 

Figure B.5: Plot of the red-green (M-L) and blue-yellow (S-Lum/2) 
opposing signals as a function of wavelength. 
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B.6. Reliability of  the matrix transformations 

As mentioned before, our matrix T can only be estimated up to certain degree using 

Equation B.6 (its discrete for was presented in Equation 5.6). The reason for this 

uncertainty has its roots in the fact that R, G and B sensors of the camera do not respond 

to light on a wavelength-to-wavelength basis, instead they integrate colour responses along 

the wavelength spectra. Because of this, it is possible for two wavelength distributions to 

produce the same R, G and B responses. These wavelength distributions (or colours) are 

called metamers. Each set of primaries ( )(),( λλ GR , )(λB  and l( λ ), m( λ ), s( λ )) has its 

own set of metamers which are not necessary the same. For example, a pair of lights that 

produce the same camera [ ]RGB

)(),

 output are not seen the same by a human observer. This 

failure of agreement in colour match is called camera-eye metamerism in the colour 

imaging community (Hong et al. 2000). The transformation matrix T between the device-

dependent camera’s colour space [  and the device-independent cone sensitivity 

colour space  is only 100% accurate in the case when both sets of spectral 

sensitivity functions 

]RGB

[LMS ]

( λλ GR , )(λB  and l( λ ), m( λ ), s( λ ) have the same metamers. 

In all other cases, there are different degrees of inaccuracies. Figure B.6 illustrates this 

point with an example of a conversion between an arbitrary set of primaries [ ]ABC  and 

another , which results in a highly inaccurate matrix conversion (all coefficients of 

matrix T will be close to 0). 

[PQR]
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Figure B.6: Example of two hypothetical set of primaries (ABC and 
PQR) that would give a highly inaccurate matrix transformation T if 

calculated using the method above. 

In this (rather extreme) example the set of curves do not overlap and their peaks are 

located in different positions along the visible spectrum. This type of inaccuracy is likely 

to cause the mismatch between the L, M and S values predicted from SR radiometric data 

and those calculated from camera R, G and B data in Section 5.4.3. 

The matrix below is the (customised) transformation matrix T obtained for our Nikon 

Coolpix 950 digital camera using the procedure described in the previous sections: 
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840.0130.0029.0
134.0720.0144.0
077.0574.0347.0

=T  

As a comparison, we estimated the coefficients of a matrix T’ obtained from the 

International Telecommunications Union (ITU) standard XYZitu601-1 (D65). This 

standard matrix (used in the literature to convert between the device dependent  

space and the device-independent XYZ space) was modified so that its rows add up to 1. 

Matrix X was obtained by combining the normalised ITU standard matrix with the XYZ-

to-LMS standard transformation matrix (Wyszecki and Stiles 1967). The result is shown 

below (Reinhard et al. 2001). 

[ ]RGB

844.0128.0024.0
078.0724.0196.0
040.0578.03811.0

=X  

Using the matrix T obtained in this way and Equation 5.6 we calculated a set of LMS 

sensitivity functions, where each point is produced by a matrix transformation of the 

original sensor’s RGB triplets at each wavelength. Figure B.7 shows a plot of these 

calculated LMS values (secondary y-axis) superimposed to the original LMS cone 

sensitivity functions (primary y-axis). The figure shows the limitations of this matrix 

transformation, given that the calculated LMS values still resemble the shape of the 

original camera’s RGB functions from where they are derived. Figure B.7 also shows that 

the calculated L function has now shifted closer to the M function and is sensitive to 

middle-wavelength frequencies, more in accordance with the shape of the real LMS 

functions. However, given that the spectral distribution of light reflected from most 

natural objects is in general continuous across the visible spectrum and does not contain 

sharp peaks, we believe that these approximations are appropriate for the kind of stimulus 
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that we intend to study (see Section 5.4.3 for a quantitative comparison between the 

camera’s transformation and a calibrated instrument). 

 

Figure B.7: Comparison between the LMS spectral sensitivity 
functions calculated from the camera’s RGB spectral sensitivities and 
the human LMS sensitivity functions. 
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